Formulation Development and Evaluation of Dry Adsorbed Nanoparticles of Curcumin and Piperine Dual Drug Loaded Nanostructured Lipid Carriers

DOI:

https://doi.org/10.37285/ijpsn.2023.16.4.2

Authors

  • Rajashree Hirlekar Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy, Affiliated to University of Mumbai, Mumbai 400 074, Maharashtra, INDIA.
  • Srinivas Bhairy Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy
  • Alfiha Momin Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy, Affiliated to University of Mumbai, Mumbai 400 074, Maharashtra, INDIA.

Abstract

Purpose: The present study was aimed at preparing stable dry adsorbed nanoparticles (DANs) of curcumin (CUR) and piperine (PIP) loaded nanostructured lipid carriers (NLCs). 

Methods: CUR and PIP-loaded NLCs (CP NLCs) were prepared by modified hot-melt emulsification using precirol ATO5 (PRE) as solid lipid, labrafac lipophile WL1349 (LAF) as liquid lipid, and a combination of tween 80 (T80) with gelucire 50/13 (G50/13) as surfactants. The NLCs system was subjected to physical stability, particle size, zeta potential, thermal behaviour, crystallinity study and in-vitro drug release. Further, an evaporative drying technique converted the NLC system into stable DANs by adsorbing onto mannitol (Pearlitol 200SD). The DANs were characterized for redispersion properties, particle size, flow properties and in-vitro drug release. The stability studies were carried out for 30 days. 

Results: The optimized CP NLCs were of imperfect type and had a mean particle size of 248.5 ± 12.8 nm (size distribution of 0.216 ± 0.021), a zeta potential of -9.03 ± 0.53 mV, an entrapment efficiency (EE) of 99.80 ± 0.21% (CUR), 100.05 ± 0.07% (PIP) with a drug recovery of 99.70 ± 0.21% (CUR) and 100.36 ± 0.12% (PIP). The X-ray diffraction pattern and endothermic peaks confirmed the encapsulation of actives in lipid matrices. The in-vitro drug release showed controlled release for 24 h. The optimized DANs led to maximum redispersion and retained a particle size of 268.4 ± 23.1 nm (distribution 0.235 ± 0.037) with controlled release similar to CP NLCs. The CP NLCs DANs showed reasonable stability for 30 days. 

Conclusions: The developed CP NLCs DANs showed a controlled release profile, and the adsorption technique can be used to improve the stability of NLC dispersion. The DANs can be offered in patient-friendly dosage forms such as sachets, capsules, and compressed tablets.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Curcumin, Piperine, Hot melt emulsification, Nanostructured lipid carriers, Dry adsorbed nanoparticles

Downloads

Published

2023-07-31

How to Cite

1.
Hirlekar R, Bhairy S, Momin A. Formulation Development and Evaluation of Dry Adsorbed Nanoparticles of Curcumin and Piperine Dual Drug Loaded Nanostructured Lipid Carriers. Scopus Indexed [Internet]. 2023 Jul. 31 [cited 2024 Jun. 15];16(4):6844-6. Available from: http://ijpsnonline.com/index.php/ijpsn/article/view/2760

Issue

Section

Research Articles

References

Bruce JA. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J Pharm Sci. 1993 Jan 22;82(10):979-87. DOI: https://doi.org/10.1002/jps.2600821008.

Christopher J, William N. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev. 2001 Oct 1;50(1):S127-47. DOI: https://doi.org/10.1016/S0169-409X(01)00182-X.

Gordon L, Hans L, Vinod S, Vinod S, John C. A theoretical basis for a biopharmaceutic drug classification: the correlation in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995 Mar 1;12(3):413-20. DOI: https://doi.org/10.1023/a:1016212804288.

Moorthi C, Senthil C, Kathiresan K. Synergistic anti-cancer activity of curcumin and bio-enhancers combination against various cancer cell lines. Int J Pharm Pharm Sci. 2014 Jan 1;6(1):901-3.

Ann-Lii C, Chih-Hung H, Jen-Kun L, Mow-Ming H, Yunn-Fanh H, Tzung-Shiahn S, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001 May 2;21(4B): 2895-900.

Navneet D, Bharat A, Robert N, Robert W, Ajaikumar K, James A, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008 Jul 15;14(14):4491-9. DOI: https://doi.org/10.1158/1078-0432.CCR-08-0024.

Guido S, David J, Thangam J, Majeed M, Rajendran R, Srinivas S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998 May 1;64(4):353-6. DOI: https://doi.org/10.1055/s-2006-957450.

Madhuri K, Dean EB, Hasan K, Connie C, Karim T, Christophe G, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2009 Nov 7;122(3):777-85. DOI: https://doi.org/10.1007/s10549-009-0612-x.

David H, Steven F, James F, Caswall P, Tapon R, Andrew J, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998 Feb 1;87(2):164-9. DOI: https://doi.org/10.1021/js970300n.

Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008 Mar 17;60(6):734-6. DOI: https://doi.org/10.1016/j.addr.2007.09.006.

Sandeep K, Mohanvarma M, Veerabhadhraswamy P. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sinica B. 2013 Dec 1;3(6):361-72. DOI: https://doi.org/10.1016/j.apsb.2013.10.001.

Parisa G, Soliman M. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018 Aug 1;13(4):288-303. DOI: https://doi.org/10.4103/1735-5362.235156.

Anupam S, Malay KD, Tapash C, Sanjoy D. Nanostructured lipid carriers (NLCs)-based intranasal Drug Delivery System of Tenofovir disoproxil fumerate (TDF) for brain targeting. Res J Pharm Technol. 2020 April 6;13(11):5411-24. DOI: https://doi.org/10.5958/0974-360X.2020.00946.4.

Srilatha T, Umasankar K, Jayachandra Reddy P, Srikar N. Synthesis, screening and nanotechnology based in vivo drug delivery of curcumin and its analogues. Asian J Pharm Sci Technol. 2012 Jul 1;2(2):62-87.

Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (nlc)–based gel of valdecoxib. Drug Dev Ind Pharm. 2006 Sep 25;32(8):911-8. https://doi.org/10.1080/03639040600814676.

Qianwen Li, Tiange C, Yinghong H, Xi X, Susan C. Yu C. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials. 2017 May 27; 7(6):1-25. DOI: https://doi.org/10.3390/nano7060122.

Srinivas B, Ashraf S, Vivek N, Rajashree H. Development and validation of bivariate UV-visible spectroscopic method for simultaneous estimation of curcumin and piperine in their combined nanoparticulate system. J Appl Pharm Sci. 2021 May 2;11(5):64-70. DOI: https://doi.org/10.7324/JAPS.2021.110509.

Padhye G, Mangal N. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci. 2013 Sep 1;75(5):591-8. DOI: https://doi.org/10.4103/0250-474X.122883.

Hywel W, Michiel S, Patrick A, Christopher, Porter J. Lipid-based formulations solidified via adsorption onto the mesoporous carrier neusilin_R US2: effect of drug type and formulation composition on in vitro pharmaceutical performance. J Pharm Sci. 2014 Jun 1;103(6):1734-46. DOI: https://doi.org/10.1002/jps.23970.

Mohammed E, Mohammad A. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021 Sep 16;29(9):999-1012. DOI: https://doi.org/10.1016/j.jsps.2021.07.015.

Linli W, Nan L, Longshan Z, Chao Q, Weiyang Z, Jinhua D, et al. Characterization of stress degradation products of curcumin and its two derivatives by UPLC–DAD–MS/MS. Arab J Chem. 2019 Dec 30;12(8):3998-4005. DOI: https://doi.org/10.1016/j.arabjc.2016.02.003.

Hanne T, Jan K. Studies on curcumin and curcuminoids vi. Kinetics of curcumin degradation in aqueous solution. Z Lebens unters forsch. 1985 May 1;180(5):402-4. DOI: https://doi.org/10.1007/BF01027775.

Suresh K, Yogesh C, Priyanka B, Preetesh M, Khusbu S, Pallavi D. Degradation studies of curcumin. Int J Pharm Rev Res. 2013 Jul 1;3(2):50-5.

Ornchuma N, Mies S, Javier T, Siriporn O, Wim H. A kinetic degradation study of curcumin in its free form and loaded in polymeric micelles. AAPS J. 2016 Apr 1;18(3):777-87. DOI: https://doi.org/10.1208/s12248-015-9863-0.

Tanvi G, Joga S, Sandeep K, Simarjot S, Gurpal S, Indu K. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Front Bioeng Biotechnol. 2020 Oct 15;8(1):1-14. DOI: https://doi.org/10.3389/fbioe.2020.00879.

Mahesh K, Zheyuan D, Guodong Z, David M. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem. 2017 Mar 1;65(8):1525-32. DOI: https://doi.org/10.1021/acs.jafc.6b04815.

Oetari S, Sudibyo M, Jan C, Samhoedi R, Nico V. Effects of curcumin on cytochrome p450 and glutathione s-transferase activities in rat liver. Biochem Pharmacol. 1996 Jan 12;51(1):39-45. DOI: https://doi.org/10.1016/0006-2952(95)02 113-2.

Ying-Jan W, Min-Hsiung P, Ann-Lii C, Liang-In L, Yuan-Soon H, Chang-Yao H, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997 Aug 1;15(12):1867-76. DOI: https://doi.org/10.1016/s0731-7085(96)02024-9.

Westesen K, Bunjes H, Koch J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997 Oct 13;48(2-3):223-36. DOI: https://doi.org/10.1016/S0168-3659(97)00046-1.

Kshitij M, Dipak S. SLNs can serve as the new brachytherapy seed: determining influence of surfactants on particle size of solid lipid microparticles and development of hydrophobized copper nanoparticles for potential insertion. J Chem Eng Process Technol. 2016 Jul 21;7(3):1-9. DOI: https://doi.org/10.4172/2157-7048.1000302.

Wolfgang M, Karsten M. Solid lipid nanoparticles Production, characterization and applications. Adv Drug Deliv Rev. 2001 Apr 25;47(2-3):165-96. https://doi.org/10.1016/S0169-409X(01)00105-3.

Melike U, Ecem K, Zeynep A. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop J Pharm Res. 2014 May 1;13(5):653-60. DOI: https://doi.org/10.4314/tjpr.v13i5.1.

Maryam Z, Akram P. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int J Curr Microbiol Appl Sci. 2015 Sep 1;4(9):924-32.

Tana W, Billaa N, Roberts R, Burley C. Surfactant effects on the physical characteristics of amphotericin B-containing nanostructured lipid carriers. Colloids Surf . 2010 Dec 3;372(1-3):73-9. DOI: https://doi.org/10.1016/j.colsurfa.2010.09.030.

Helgason T, Awad S, Kristbergsson K, McClements J, Weiss J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci. 2009 Jun 1;334(1):75–81. DOI: https://doi.org/10.1016/j.jcis.2009.03.012.

Kovacevic A, Savic S, Vuletaa G, Müller H, Keck M. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm. 2011 Mar 15;406(1-2):163-72. DOI: https://doi.org/10.1016/j.ijpharm.2010.12.036.

Elwira L, Elżbieta S, Jan O. Influence of process parameters on properties of Nanostructured Lipid Carriers (NLC) formulation. Acta Biochimica Polonica. 2013 Dec 29;60(4):773-7. DOI: https://doi.org/10.18388/abp.2013_2056.

Sulena P, Jonas H, Eva B, Susanna W, Inger W. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanopart Res. 2016 Sep 22;18(9):1-14. DOI: https://doi.org/10.1007/s11051-016-3597-5.

Jamileh S, Dilpreet B, Greg H. Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites. 2020 Jan 13;6(1):41-6. DOI: https://doi.org/10.1080/20550324.2019.1710974.

Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery II. Drug incorporation and physicochemical characterization. J Microencapsul. 1999 Mar 1;16(2):205-13. DOI: https://doi.org/10.1080/026520499289185.

Muller H, Radtke M, Wissing A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002 Aug 21;242(1-2):121-8. DOI: https://doi.org/10.1016/S0378-5173(02)00 180-1.

Sarabjot K, Ujjwal N, Ramandeep S, Satvinder S, Anita D. Nanostructure Lipid Carrier (NLC): the new generation of lipid nanoparticles. Asian Pac J Health Sci. 2015 Apr 1;2(2):76-93. DOI: https://doi.org/10.21276/apjhs.2015.2.2.14.

Bharti G, Mohammad F, Saba K, Asgar Ali, Sanjula B, Javed A. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Facu Pharm Cairo Univ. 2015 Oct 29;53(2):147-59. DOI: https://doi.org/10.1016/j.bfopcu.2015.10.001.