Mesoporous Silica-Based Nanoparticles in Pharmaceutical Sciences: A Mini-Review
DOI:
https://doi.org/10.37285/ijpsn.2020.13.4.3Abstract
The sustained and comprehensive need in the field of materials having immense thermal, chemical, and mechanical stability lead to the evolution of mesoporous silica nanoparticles (MSNs). Due to higher surface area and ridged tuneable particular size, silica-based mesoporous (2-50nm) drug delivery system recently becomes a prime orb for loading different guest molecules such as peptides, proteins, anticancer drugs. The most common type of mesoporous nanoparticles is MCM-41 and SBA-15. MSMs has a wide range of applications in drug delivery, imaging, and catalysis. It was in the 1970’s, when the first patent was field related to MSMs, however during 1990, the full-fledged research started for MSMs. During that era, Mobil Corporation Laboratories, Japan started synthesizing of MSMs. Yet, the University of California also pioneered in MSMs synthesis, as they claimed to prepare 4.6-30 nm MSMs with a hexagonal array of pores; they further named it as SBA-15. MSMs has huge application in drug delivery system. Because of its larger surface area of the pores, the cytotoxin or drug can be filed within the pores like a Trojan Horse. Within the intercellular environment, by the endocytosis process, the small particles will be engulfed by biological cell membranes depending on what ligands attached within MSMs i.e., loaded RNA, loaded DNA, surface protein, PEG, and monoclonal antibody. Surprisingly, advanced research on MSMs concluded that cancerous cells have the tendencies to take MCM-41 than the healthy cells of the host; giving scientists a new hope that MCM-41 will one day be used commercially to treat a certain type of cancers. Modern research also shows that for the poorly water-soluble drug, SBA-15, TUD-1, HMM-33 and FSM-16 of MSMs has tremendous potential to improve in-vitro dissolution profiling i.e., upon loading of itraconazole (a poorly water-soluble drug) within SBA-15, it can able to stimulate GI fluid and facilitate transepithelial intestinal transport which ultimately results in higher drug absorption. In this mini-review, we attempted to discuss MSNs synthesis methods, morphology, preparations, mechanisms and recent research in the MSNs Drug delivery system. Thus, we concluded that more in vivo biocompatibility studies, biodistribution studies, toxicity studies, and clinical research is the fundamental prerequisite for further advancement in mesoporous silica-based nanoparticles (MSNs).
Downloads
Metrics
Keywords:
Mesoporous, Silica, Quartz crystal, MSNs, Biocompatibility, Drug deliveryDownloads
Published
How to Cite
Issue
Section
References
Alexa IF, Ignat, M., Popovici, R. F., Timpu, D., and Popovici, E. (2012). In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices. Int J Pharm, 436(1-2): 111-119.
Alfredsson V, Keung, M., Monnier, A., Stucky, G. D., Unger, K. K., and Schüth, F. J. J. o. t. C. S., Chemical Communications. (1994). High-resolution transmission electron microscopy of mesoporous MCM-41 type materials. (8): 921-922.
Arriagada F, Correa, O., Gunther, G., Nonell, S., Mura, F., Olea-Azar, C., and Morales, J. (2016). Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS One, 11(11): e0164507.
Balas F, Manzano, M., Horcajada, P., and Vallet-Regi, M. (2006). Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc, 128(25): 8116-8117.
Behrens P, Glaue, A., Haggenmüller, C., and Schechner, G. (1997). Structure-directed materials syntheses: Synthesis field diagrams for the preparation of mesostructured silicas. Solid State Ionics, 101: 255-260.
Botella P, Corma, A., and Quesada, MJJ (2012). Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs. 22(13): 6394-6401.
Brokenshire S (2014). Controlled Release Mechanisms for Mesoporous Silica Nanoparticles.
Chew TL, Ahmad, A. L., and Bhatia, S. (2010). Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Advances in colloid and interface science, 153(1-2): 43-57.
Ciesla U and Schüth F (1999). Ordered mesoporous materials. Microporous and Mesoporous Materials, 27(2-3): 131-149.
Crepaldi, E. L., Soler-Illia, G. J. d. A., Grosso, D., Cagnol, F., Ribot, F., and Sanchez, C. (2003). Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. Journal of the American Chemical Society, 125(32): 9770-9786.
de AA. Soler-Illia, G. J., Sanchez, C., Lebeau, B., and Patarin, J. (2002). Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 102(11): 4093-4138.
de Oliveira Freitas, L. B., de Melo Corgosinho, L., Faria, J. A. Q. A., dos Santos, V. M., Resende, J. M., Leal, A. S.,de Sousa, E. M. B. (2017). Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 242: 271-283.
Fu Q, Hargrove, D., and Lu, X. (2016). Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 12(7): 1951-1959.
Ganesh M and Lee SG (2013). Synthesis, characterization and drug release capability of new cost effective mesoporous silica nano particle for ibuprofen drug delivery. 6: 207-216.
Grün M, Lauer, I., and Unger, K. K. J. A. M. (1997). The synthesis of micrometer‐and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41. 9(3): 254-257.
Hu, J, Gao, F., Shang, Y., Peng, C., Liu, H., Hu, Y. J. M., and materials, M. (2011). One-step synthesis of micro/mesoporous material templated by CTAB and imidazole ionic liquid in aqueous solution. 142(1): 268-275.
Huo Q, Leon, R., Petroff, P. M., and Stucky, G. D. (1995). Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science, 268(5215): 1324-1327.
Izquierdo-Barba, I., Colilla, M., and Vallet-Regí, M. (2008). Nanostructured mesoporous silicas for bone tissue regeneration. Journal of Nanomaterials, 2008, 60.
Izquierdo-Barba, I., Ruiz-González, L., Doadrio, J. C., González-Calbet, J. M., and Vallet-Regí, M. (2005). Tissue regeneration: a new property of mesoporous materials. Solid state sciences, 7(8): 983-989.
Jafarzadeh, A., Sohrabnezhad, S., Zanjanchi, M., and Arvand, M. (2016). Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media. Journal of Solid State Chemistry, 242: 236-242.
Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R., and Mirkin, C. A. J. C. r. (2011). Templated techniques for the synthesis and assembly of plasmonic nanostructures. 111(6): 3736-3827.
Kim, S., Diab, R., Joubert, O., Canilho, N., and Pasc, A. (2016). Core–shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 140: 161-168.
Kresge, C., Leonowicz, M., Roth, W. J., Vartuli, J., and Beck, J. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature, 359(6397), 710.
Kumar, B., Kulanthaivel, S., Mondal, A., Mishra, S., Banerjee, B., Bhaumik, A., Giri, S. (2017). Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids and Surfaces B: Biointerfaces, 150: 352-361.
Kumar, P., and Guliants, V. V. (2010). Periodic mesoporous organic–inorganic hybrid materials: applications in membrane separations and adsorption. Microporous and Mesoporous Materials, 132(1-2): 1-14.
Lesaint, C., Kleppa, G., Arla, D., Glomm, W. R., and Øye, G. (2009). Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route. Microporous and Mesoporous Materials, 119(1-3): 245-251.
Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., and Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7): 2590-2605.
Liu, H.-J., Cui, W.-J., Jin, L.-H., Wang, C.-X., and Xia, Y.-Y. (2009). Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry, 19(22): 3661-3667.
Liu, J., Qiao, S. Z., Hu, Q. H., and Lu, G. Q. (2011). Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small, 7(4): 425-443.
Mishra, A. K., Pandey, H., Agarwal, V., Ramteke, P. W., and Pandey, A. C. (2014). Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. Journal of Nanoparticle Research, 16(8): 2515. doi:10.1007/s11051-014-2515-y
Mohseni, M., Gilani, K., and Mortazavi, S. A. (2015). Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iran J Pharm Res, 14(1): 27-34.
Moraru, C. I., Panchapakesan, C. P., Huang, Q., Takhistov, P., Liu, S., and Kokini, J. L. (2003). Nanotechnology: A New Frontier in Food Science Understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology, 57(12).
Mudakavi, R. J., Vanamali, S., Chakravortty, D., and Raichur, A. M. (2017). Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Advances, 7(12): 7022-7032. doi:10.1039/C6RA27868J
Mukhopadhyay, S., Veroniaina, H., Chimombe, T., Han, L., Zhenghong, W., and Xiaole, Q. J. R. A. (2019). Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. 9(61): 35566-35578.
Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 6(1): 34053.
Oza, G., Pandey, S., Shah, R., Vishwanathan, M., Kesarkar, R., Sharon, M., and Sharon, M. J. A. A. S. R. (2012). Tailoring aspect ratio of gold nano rods: impact of temperature, pH, silver ions, CTAB concentration and centrifugation. 3(2): 1027-1038.
Pavel-Licsandru, I.-A. (2017). Silica based materials for the encapsulation of β-Galactosidase.
Piao, Y., Burns, A., Kim, J., Wiesner, U., and Hyeon, T. (2008). Designed fabrication of silica‐based nanostructured particle systems for nanomedicine applications. Advanced Functional Materials, 18(23): 3745-3758.
Saroj, S., and Rajput, S. J. (2018). Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide. Drug Dev Ind Pharm, 44(7): 1198-1211.
Sun, B., Zhou, G., and Zhang, H. J. P. i. S. S. C. (2016). Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review. 44(1): 1-19.
Tang, F., Li, L., and Chen, D. J. A. m. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. 24(12): 1504-1534.
Uskokovic, V. (2013). Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol, 9(9): 1441-1470.
Vallet-Regí, M., Colilla, M., and Izquierdo-Barba, I. (2008). Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. Journal of Biomedical Nanotechnology, 4(1): 1-15.
Vallet-Regí, M., Ruiz-González, L., Izquierdo-Barba, I., and González-Calbet, J. M. (2006). Revisiting silica based ordered mesoporous materials: medical applications. Journal of Materials Chemistry, 16(1): 26-31.
Vallet‐Regí, M. (2006). Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry–A European Journal, 12(23): 5934-5943.
Wang, G. H., Li, A., and Zhang, Y. (2010). Preparation of Microsized Monodisperse Silica Spheres by Hydrolysis of Tetraethoxy Silane. Paper presented at the Advanced Materials Research.
Wang, X. (2015). Silica nanoparticles as gene delivery systems for skin tissue repair.
Yoncheva, K., Popova, M., Szegedi, A., Mihaly, J., Tzankov, B., Lambov, N.,Valoti, M. (2014). Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. Journal of Solid State Chemistry, 211: 154-161.
Zdravkov, B. D., Čermák, J. J., Šefara, M., and Janků, J. (2007). Pore classification in the characterization of porous materials: A perspective. Central European journal of chemistry, 5(2): 385-395.