Enhanced Protease Production from Rummeliibacillus Stabekisii (TWSS-P-2) Strain through Mutagenesis and Optimized Culture Conditions

DOI:

https://doi.org/10.37285/ijpsn.2021.14.4.5

Authors

  • Srinivas Podeti
  • Suresh Lapaka
  • Ramya Chouhan
  • Nagraj Alpula

Abstract

Identification of proper microbial sources and optimizing the enzyme production conditions are essential for industrial-scale enzyme production. The present study was done to identify and enhance the production of protease enzyme from an important microbial source Rummeliibacillus stabekisii (TWSS-P-2). Ultra-violet radiation physical method and ethyl methanesulfonate and ethidium bromide dependent chemical methods were considered for mutagenesis. Enzyme assay-dependent screening resulted in identifying Rummeliibacillus stabekisii (TWSS-P-2) as the best strain with optimum protease production that was improved through the chemical treatment mentioned. The strains were tested under various physical and chemical factors including carbon source, nitrogen source, inoculum sizes, pH, temperature to optimize the production of the protein. Submerged fermentation (SmF) was used to assess enzyme production. We were successful in deriving the optimum condition for the protease enzyme production for Rummeliibacillus stabekisii (TWSS-P-2) and the mutagenic effect yielded 2-4 fold better enzyme production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Rummeliibacillus stabekisii, Mutagenesis, protease enzyme, enhanced production

Downloads

Published

2021-07-01

How to Cite

1.
Podeti S, Lapaka S, Chouhan R, Alpula N. Enhanced Protease Production from Rummeliibacillus Stabekisii (TWSS-P-2) Strain through Mutagenesis and Optimized Culture Conditions. Scopus Indexed [Internet]. 2021 Jul. 1 [cited 2025 Jan. 22];14(4):5557-64. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/2122

Issue

Section

Research Articles

References

Adetunji AI and Olaniran AO (2020). Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. Biocatal. Agric. Biotechnol. 24:101528.https://doi.org/ 10.1016/j.bcab.2020.101528

Arora N, Banerjee AK, Mutyala S and Murty US (2009). Comparative characterization of commercially important xylanase enzymes. Bioinformation 3(10): 446-453. DOI: 10.6026/97320630003446.

Balakrishnan R, Tadi SR, Pavan AS, Sivaprakasam S and Rajaram S (2020). Effect of nitrogen sources and neutralizing agents on D-lactic acid production from Kodo millet bran hydrolysate: comparative study and kinetic analysis. J. Food Sci. Technol. 57(3): 915-26. DOI: 10.1007/s13197-019-04124-7

Banerjee AK, Ravi V, Murty US, Shanbhag AP and Prasanna VL (2013). Keratin protein property based classification of mammals and non-mammals using machine learning techniques. Comput. Biol. Med. 43(7): 889-899. DOI: 10.1016/ j.compbiomed.2013.04.007.

Benmrad MO, Moujehed E, Elhoul MB, Mechri S, Bejar S, Zouari R, Baffoun A and Jaouadi B (2019). A novel detergent-stable protease from Penicillium chrysogenium X5 and its utility in textile fibres processing. In Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition (p. 1). MDPI.

Chang S, Guo Y, Wu B and He B (2017). Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky 9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int. J. Biol. Macromol. 96: 249-256. DOI: 10.1016/j.ijbiomac.2016.11.032

Dhawan S and Kaur J (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 27(4): 197-216. DOI: 10.1080/07388550701775919

Gibbons WR and Westby CA (1986). Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production. Appl. Environ. Microbial. 52(4): 960-2. DOI: 10.1128/AEM.52.4.960-962.1986

Gnanadoss JJ and Devi SK (2015). Optimization of nutritional and culture conditions for improved protease production by Aspergillus nidulans and Aspergillus flavus. J Microbiol. Biotechnol. Food Sci. 4(6): 518-23. DOI:10.15414/jmbfs. 2015.4.6.518-523

Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U and Chinni SV(2017). Biotechnological processes in microbial amylase production. Bio Med Res. Int. 2017: 1-9. https://doi.org/10.1155/2017/1272193

Guérard F, Guimas L and Binet A (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation.J. Mol. Catal. B Enzym. 19: 489-98.

Gupta R, Beg Q and Lorenz P (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59(1): 15-32. DOI: 10.1007/s00253-002-0975-y

Hurtado-Cantillo DG, Moreno-Enríquez A and Evangelista-Martínez Z (2019). Influence of carbon source on extracellular protease production by soil Streptomyces sp. AGS-10. J Microbiol. Biotechnol. Food Sci. 9(2): 10. DOI: 10.15414/jmbfs.2019.9.2.236-241

Hussain F, Kamal S, Rehman S, Azeem M, Bibi I, Ahmed T and Iqbal HM (2017). Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus subtilis sp. Catal. Lett. 147(5): 1204-13.DOI:10.1007/s10562-017-2017-5

Ke Y, Yuan X, Li J, Zhou W, Huang X and Wang T (2018). High-level expression, purification, and enzymatic characterization of a recombinant Aspergillus sojae alkaline protease in Pichia pastoris. Protein Expr. Purif. 148: 24-9. DOI: 10.1016/ j.pep.2018.03.009

Kumar D and Bhalla TC (2005). Microbial proteases in peptide synthesis: approaches and applications. Appl. Microbiol. Biotechnol. 68(6): 726-36. DOI: 10.1007/s00253-005-0094-7

Kumar D, Savitri TN, Verma R and Bhalla TC (2008). Microbial proteases and application as laundry detergent additive. Res. J. Microbiol. 3(12): 661-72. DOI: 10.3923/jm.2008.661.672

Lasekan A, Bakar FA and Hashim D (2013). Potential of chicken by-products as sources of useful biological resources. Waste Management 33(3): 552-65. DOI: 10.1016/j.wasman.2012.08.001

Machado AR, Teixeira MF, de Souza Kirsch L, Campelo MD and de Aguiar Oliveira IM (2016). Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi J. Biol. Sci. 23(5): 621-7. DOI: 10.1016/j.sjbs.2015.07.002

Price J, Nordblad M, Martel HH, Chrabas B, Wang H, Nielsen PM and Woodley JM (2016). Scale‐up of industrial biodiesel production to 40 m3 using a liquid lipase formulation. Biotechnol. Bioeng. 113(8): 1719-28. DOI: 10.1002/bit.25936

Promchai R, Boonchalearn A, Visessanguan W and Luxananil P (2018). Rapid production of extracellular thermostable alkaline halophilic protease originating from an extreme haloarchaeon, Halobacterium salinarum by recombinant Bacillus subtilis. Biocatal. Agric. Biotechnol. 15: 192-8. https://doi.org/10.1016/ j.bcab.2018.06.017

Rani K, Rana R and Datt S (2012). Review on latest overview of proteases. Int J Curr Life Sci. 2(1): 12-8.

Rao MB, Tanksale AM, Ghatge MS and Deshpande VV (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62(3): 597-635.

Ray A (2012). Protease enzyme-potential industrial scope. Int. J. Tech. 2: 1-4.

Salihi A, Asoodeh A and Aliabadian M (2017). Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93. Int. J. Biol. Macromol. 94: 827-35. DOI: 10.1016/j.ijbiomac.2016.06.023

Sandhya C, Sumantha A, Szakacs G and Pandey A (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40(8): 2689-94. DOI: 10.1002/jctb.1907

Saran S, Chib S and Saxena RK (2019). Biotechnology of Leather: An Alternative to Conventional Leather Processing. High Value Fermentation Products: Human Welfare. 2: 23-47.

Sen SV, Dasu V, Dutta K and Mandal B (2011). Characterization of a novel surfactant and organic solvent stable high-alkaline protease from new Bacillus pseudofirmus SVB1. Res. J. Microbiol. 6: 769-83. DOI: 10.3923/jm.2011.769.783

Uyar F and Baysal Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochem. 39(12): 1893-8.DOI:10.1016/j.procbio.2003.09.016

Vadlamani S and Parcha SR (2011). Studies on industrially important alkaline protease production from locally isolated superior microbial strain from soil microorganisms. Int. J. Biotechnol. Appl. 3(3):102-5.

Vishnupriya CS, Sunish KS and Rebello S (2016). Molecular characterisation of alkaline protease producing Bacillus subtilis from soil. Int J Res Pharm Chem. 6: 485-90.