Enhanced Protease Production from Rummeliibacillus Stabekisii (TWSS-P-2) Strain through Mutagenesis and Optimized Culture Conditions
DOI:
https://doi.org/10.37285/ijpsn.2021.14.4.5Abstract
Identification of proper microbial sources and optimizing the enzyme production conditions are essential for industrial-scale enzyme production. The present study was done to identify and enhance the production of protease enzyme from an important microbial source Rummeliibacillus stabekisii (TWSS-P-2). Ultra-violet radiation physical method and ethyl methanesulfonate and ethidium bromide dependent chemical methods were considered for mutagenesis. Enzyme assay-dependent screening resulted in identifying Rummeliibacillus stabekisii (TWSS-P-2) as the best strain with optimum protease production that was improved through the chemical treatment mentioned. The strains were tested under various physical and chemical factors including carbon source, nitrogen source, inoculum sizes, pH, temperature to optimize the production of the protein. Submerged fermentation (SmF) was used to assess enzyme production. We were successful in deriving the optimum condition for the protease enzyme production for Rummeliibacillus stabekisii (TWSS-P-2) and the mutagenic effect yielded 2-4 fold better enzyme production.
Downloads
Metrics
Keywords:
Rummeliibacillus stabekisii, Mutagenesis, protease enzyme, enhanced productionDownloads
Published
How to Cite
Issue
Section
References
Adetunji AI and Olaniran AO (2020). Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. Biocatal. Agric. Biotechnol. 24:101528.https://doi.org/ 10.1016/j.bcab.2020.101528
Arora N, Banerjee AK, Mutyala S and Murty US (2009). Comparative characterization of commercially important xylanase enzymes. Bioinformation 3(10): 446-453. DOI: 10.6026/97320630003446.
Balakrishnan R, Tadi SR, Pavan AS, Sivaprakasam S and Rajaram S (2020). Effect of nitrogen sources and neutralizing agents on D-lactic acid production from Kodo millet bran hydrolysate: comparative study and kinetic analysis. J. Food Sci. Technol. 57(3): 915-26. DOI: 10.1007/s13197-019-04124-7
Banerjee AK, Ravi V, Murty US, Shanbhag AP and Prasanna VL (2013). Keratin protein property based classification of mammals and non-mammals using machine learning techniques. Comput. Biol. Med. 43(7): 889-899. DOI: 10.1016/ j.compbiomed.2013.04.007.
Benmrad MO, Moujehed E, Elhoul MB, Mechri S, Bejar S, Zouari R, Baffoun A and Jaouadi B (2019). A novel detergent-stable protease from Penicillium chrysogenium X5 and its utility in textile fibres processing. In Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition (p. 1). MDPI.
Chang S, Guo Y, Wu B and He B (2017). Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky 9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int. J. Biol. Macromol. 96: 249-256. DOI: 10.1016/j.ijbiomac.2016.11.032
Dhawan S and Kaur J (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol. 27(4): 197-216. DOI: 10.1080/07388550701775919
Gibbons WR and Westby CA (1986). Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production. Appl. Environ. Microbial. 52(4): 960-2. DOI: 10.1128/AEM.52.4.960-962.1986
Gnanadoss JJ and Devi SK (2015). Optimization of nutritional and culture conditions for improved protease production by Aspergillus nidulans and Aspergillus flavus. J Microbiol. Biotechnol. Food Sci. 4(6): 518-23. DOI:10.15414/jmbfs. 2015.4.6.518-523
Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U and Chinni SV(2017). Biotechnological processes in microbial amylase production. Bio Med Res. Int. 2017: 1-9. https://doi.org/10.1155/2017/1272193
Guérard F, Guimas L and Binet A (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation.J. Mol. Catal. B Enzym. 19: 489-98.
Gupta R, Beg Q and Lorenz P (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59(1): 15-32. DOI: 10.1007/s00253-002-0975-y
Hurtado-Cantillo DG, Moreno-Enríquez A and Evangelista-Martínez Z (2019). Influence of carbon source on extracellular protease production by soil Streptomyces sp. AGS-10. J Microbiol. Biotechnol. Food Sci. 9(2): 10. DOI: 10.15414/jmbfs.2019.9.2.236-241
Hussain F, Kamal S, Rehman S, Azeem M, Bibi I, Ahmed T and Iqbal HM (2017). Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus subtilis sp. Catal. Lett. 147(5): 1204-13.DOI:10.1007/s10562-017-2017-5
Ke Y, Yuan X, Li J, Zhou W, Huang X and Wang T (2018). High-level expression, purification, and enzymatic characterization of a recombinant Aspergillus sojae alkaline protease in Pichia pastoris. Protein Expr. Purif. 148: 24-9. DOI: 10.1016/ j.pep.2018.03.009
Kumar D and Bhalla TC (2005). Microbial proteases in peptide synthesis: approaches and applications. Appl. Microbiol. Biotechnol. 68(6): 726-36. DOI: 10.1007/s00253-005-0094-7
Kumar D, Savitri TN, Verma R and Bhalla TC (2008). Microbial proteases and application as laundry detergent additive. Res. J. Microbiol. 3(12): 661-72. DOI: 10.3923/jm.2008.661.672
Lasekan A, Bakar FA and Hashim D (2013). Potential of chicken by-products as sources of useful biological resources. Waste Management 33(3): 552-65. DOI: 10.1016/j.wasman.2012.08.001
Machado AR, Teixeira MF, de Souza Kirsch L, Campelo MD and de Aguiar Oliveira IM (2016). Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi J. Biol. Sci. 23(5): 621-7. DOI: 10.1016/j.sjbs.2015.07.002
Price J, Nordblad M, Martel HH, Chrabas B, Wang H, Nielsen PM and Woodley JM (2016). Scale‐up of industrial biodiesel production to 40 m3 using a liquid lipase formulation. Biotechnol. Bioeng. 113(8): 1719-28. DOI: 10.1002/bit.25936
Promchai R, Boonchalearn A, Visessanguan W and Luxananil P (2018). Rapid production of extracellular thermostable alkaline halophilic protease originating from an extreme haloarchaeon, Halobacterium salinarum by recombinant Bacillus subtilis. Biocatal. Agric. Biotechnol. 15: 192-8. https://doi.org/10.1016/ j.bcab.2018.06.017
Rani K, Rana R and Datt S (2012). Review on latest overview of proteases. Int J Curr Life Sci. 2(1): 12-8.
Rao MB, Tanksale AM, Ghatge MS and Deshpande VV (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62(3): 597-635.
Ray A (2012). Protease enzyme-potential industrial scope. Int. J. Tech. 2: 1-4.
Salihi A, Asoodeh A and Aliabadian M (2017). Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93. Int. J. Biol. Macromol. 94: 827-35. DOI: 10.1016/j.ijbiomac.2016.06.023
Sandhya C, Sumantha A, Szakacs G and Pandey A (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40(8): 2689-94. DOI: 10.1002/jctb.1907
Saran S, Chib S and Saxena RK (2019). Biotechnology of Leather: An Alternative to Conventional Leather Processing. High Value Fermentation Products: Human Welfare. 2: 23-47.
Sen SV, Dasu V, Dutta K and Mandal B (2011). Characterization of a novel surfactant and organic solvent stable high-alkaline protease from new Bacillus pseudofirmus SVB1. Res. J. Microbiol. 6: 769-83. DOI: 10.3923/jm.2011.769.783
Uyar F and Baysal Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochem. 39(12): 1893-8.DOI:10.1016/j.procbio.2003.09.016
Vadlamani S and Parcha SR (2011). Studies on industrially important alkaline protease production from locally isolated superior microbial strain from soil microorganisms. Int. J. Biotechnol. Appl. 3(3):102-5.
Vishnupriya CS, Sunish KS and Rebello S (2016). Molecular characterisation of alkaline protease producing Bacillus subtilis from soil. Int J Res Pharm Chem. 6: 485-90.