Nano Sponges

Recent Advances in New Drug Delivery

DOI:

https://doi.org/10.37285/ijpsn.2019.12.6.2

Authors

  • Amarjit Salunke Salunke School of Pharmacy & Research, People's University, Bhopal, India. Sr. No. 101 Saisha Row House, Ghule Park, Gopalpatti Manjari, Pune (M.S)- 412307, India
  • Neeraj Upamanyu School of Pharmacy & Research, People's University, Bhopal, India. Sr. No. 101 Saisha Row House, Ghule Park, Gopalpatti Manjari, Pune (M.S)- 412307, India
  • Alka Singh School of Pharmacy & Research, People's University, Bhopal, India. Sr. No. 101 Saisha Row House, Ghule Park, Gopalpatti Manjari, Pune (M.S)- 412307, India
  • Ashish Jaiswal School of Pharmacy & Research, People's University, Bhopal, India. Sr. No. 101 Saisha Row House, Ghule Park, Gopalpatti Manjari, Pune (M.S)- 412307, India

Abstract

The convenient and recent drug delivery system always likely to have some ideal and unique characters, particularly for safety, desired actions, accurate delivery, enrich with a therapeutic index with minimal adverse occurrence. In this regard, Nano sponges serve as a recent advance new drug delivery. Many researchers are attracted and concerned on Nano sponges presently. The present twofold objective of the review clarifies why Nano sponges are recent and advanced delivery system along with challenges related to solubility, stability and controlled release of Nano sponge and proven techniques to overcome. Since the nano-sized drug free carriers are recently formulated and suggested for drug delivery, which can be loaded with the numerous drugs, hence dealing with an appropriate technique for drug release is the need of the present time. This article states the most convenient method for drug release, and at concluding part gives awareness on recent work done and result obtained on Nano sponge worldwide along with the unique summary on the US granted patents for Nano sponges. Thus, a complete scenario on recent work, methods for evaluations, unique and multiple characters of Nano sponge has been discussed and summarized.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Nano sponges, Drug release, Drug delivery, Drug targeting, Challenges

Downloads

Published

2019-11-30

How to Cite

1.
Salunke AS, Upamanyu N, Singh A, Jaiswal A. Nano Sponges: Recent Advances in New Drug Delivery. Scopus Indexed [Internet]. 2019 Nov. 30 [cited 2025 Jan. 22];12(6):4687-93. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/230

Issue

Section

Research Articles

References

Aithal, K. S., Udupa, N., and Sreenivasan, K. K. (1995).Physicochemical properties of drug-cyclodextrin complexes.

Indian drugs, 32(7): 293-305.

Amici, J., Alidoost, M., Francia, C., Bodoardo, S., Crespiera, S. M., Amantia, D., ... and Trotta, F. (2016). O 2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li–air cells. Chem Commun, 52(94): 13683-13686.

Ansari, K. A., Vavia, P. R., Trotta, F., and Cavalli, R. (2011). Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. Aaps Pharmscitech, 12(1): 279-286.

Aynie, I., Vauthier, C., Chacun, H., Fattal, E., and Couvreur, P. (1999). Sponge like alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev, 9(3): 301-312.

Benet, L. Z. (2013). The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci, 102(1): 34-42.

Bolmal, U. B., Manvi, F. V., Rajkumar, K., Palla, S. S., Paladugu, A., and Reddy, K. R. (2013). Recent advances in nanosponges as drug delivery system. Int J Pharm Sci Nanotechnol, 6; 1934-44.

Borini, S., D'Auria, S., Rossi, M., and Rossi, A. M. (2005). Writing 3D protein nanopatterns onto a silicon nanosponge. Lab on a Chip, 5(10): 1048-1052.

Cavalli, R., Akhter, A. K., Bisazza, A., Giustetto, P., Trotta, F., and Vavia, P. (2010). Nanosponge formulations as oxygen delivery systems. Int J Pharm, 402(1-2): 254-257.

Cavalli, R., Trotta, F., and Tumiatti, W. (2006). Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem, 56(1-2), 209-213.

D’souza, J. I., and Harinath, M. (2008). The microsponge drug delivery system: for delivering an active ingredient by controlled time release. Pharma. info. net, 6(3): 62.

Farrell, D., Limaye, S. Y., and Subramanian, S. (2009). U.S. Patent No. 7,569,202. Washington, DC: U.S. Patent and Trademark Office.

Harth, E. M., Calkins, D. J., and Van Der Ende, A. E. (2018). U.S. Patent No. 9,856,348. Washington, DC: U.S. Patent and Trademark Office.

Himangshu, B., D. Nagasamy, V., Anuttam, k., and Kammari, Harish., K. (2018). Nanosponges: A Review, Int J App Pharm, 10(4): 1-5.

Indira, B., Bolisetti, S. S., Samrat, C., Reddy, S. M., and Reddy, N. S. (2012). Nanosponges: a new era in drug delivery. J Pharm Sci, 5(12): 5293-6.

Jyoti, P., Tulsi, B., Popin, K., and Chetna, B. (2016). An Innovative Advancement for Targeted Drug Delivery: Nanosponges. Indo Global Journal of Pharmaceutical Sciences, 6(2): 59-64.

Kim, J. C., Cho, K., Lee, S., and Ryoo, R. (2015). Mesopore wallcatalyzed Friedel–Crafts acylation of bulky aromatic compounds in MFI zeolite nanosponge. Catal Today, 243: 103-108.

Lian, K. (2017). U.S. Patent Application No. 15/432,482. Mota, F. M., Eliášová, P., Jung, J., and Ryoo, R. (2016). Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene. Catal Sci Technol, 6(8): 2653- 2662.

Muthusamy, E., and Katla, S. K. (2013). U.S. Patent No. 8,404,280. Washington, DC: U.S. Patent and Trademark Office.

Niu, J., Kushima, A., Wang, C., and Li, J. (2016). U.S. Patent Application No. 14/853,610.

Patel, B., Bagade, O., Ramteke, K., Patel, R., and Awsarkar, V. (1898). An Assessment on Preparations, Characterization, and Poles Apart Appliances of Nanosponge. Int J Pharmtech Res, 6(6): 2014.

Patel, E. K., and Oswal, R. J. (2012). Nanosponge and micro sponges: a novel drug delivery system. Int J Res Pharm Chem, 2(2): 237-244.

Pawar, A. Y. (2016). Nanosponges: A Novel Drug Delivery System. Asian J Pharm, 10(04).

Penjuri, S. C. B., Ravouru, N., Damineni, S., Bns, S., and Poreddy, S.R. (2016). Formulation and evaluation of lansoprazole loaded Nanosponges. Turk J Pharm Sci, 13(3): 304-310.

Scofield, M. E., Liu, H., and Wong, S. S. (2015). A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem Soc Rev, 44(16): 5836-5860.

Selvamuthukumar, S., Anandam, S., Krishnamoorthy, K., and Rajappan, M. (2012). Nanosponges: A novel class of drug delivery system-review. J Pharm Pharmaceut Sci, 15(1):

-111.

Selvamuthukumar, Subramanian, et al. (2012). "Nanosponges: A novel class of drug delivery system-review J Pharm Pharmaceut Sci, 15.1: 103-111.

Setijadi, E., Tao, L., Liu, J., Jia, Z., Boyer, C., and Davis, T. P. (2009). Biodegradable star polymers functionalized with βcyclodextrin inclusion complexes. Biomacromolecules, 10(9):

-2707.

Sharma, R., and Pathak, K. (2011). Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol, 16(4): 367-376.

Shivani, S., & Poladi, K. K. (2015). Nanosponges-novel emerging drug delivery system: A review. Int J Pharm Sci Res, 6(2): 529.

Suárez, D. F., Monteiro, A. P., Ferreira, D. C., Brandão, F. D., Krambrock, K., Modolo, L. V., ... and Sinisterra, R. D. (2017). Efficient antibacterial nanosponges based on ZnO nanoparticles and doxycycline. J Photochem Photobiol B, 177: 85-94.

Swaminathan, S., Cavalli, R., Trotta, F., Ferruti, P., Ranucci, E., Gerges, I., ... and Vavia, P. R. (2010a). In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem, 68(1-2) : 183-191.

Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., ... and Cavalli, R. (2010b). Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm, 74(2): 193-201.

Swaminathan, S., Vavia, P. R., Trotta, F., and Torne, S. (2007). Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem, 57(1-4): 89-94.

Tejashri, G., Amrita, B., and Darshana, J. (2013). Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm, 63(3): 335-358.

Trotta, F., Cavalli, R., Tumiatti, W., Zerbinati, O., Roggero, C., and Vallero, R. (2008). U.S. Patent Application No. 11/630,403.

Trotta, F., Zanetti, M., and Cavalli, R. (2012). Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem, 8(1): 2091- 2099.

Van Giau, V., An, S. S. A., and Hulme, J. (2019). Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug design, development and therapy, 13: 327.

Wang, D., and Schaaf, P. (2018). Plasmonic nanosponges. Adv Phys X, 3(1): 1456361.

Wang, X., Du, Y., Luo, J., Lin, B., and Kennedy, J. F. (2007).Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behaviour. Carbohydr Polym, 69(1): 41-49.

Wester, R. C., Patel, R., Nacht, S., Leyden, J., Melendres, J., and Maibach, H. (1991). Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J Am Acad Dermatol, 24(5): 720-726.

Yadav, G. V., and Panchory, H. P. (2013). Nanosponges: A boon to the targeted drug delivery system, Journal of drug delivery and therapeutics, 3(4): 151-155.

Zhu, Z., Zhai, Y., Zhu, C., Wang, Z., and Dong, S. (2013). Bimetallic alloy nanowires and nanosponges: A comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction. Electrochem commun, 36: 22-25.