Proliposome: A Novel Solution for the Stability of Liposomes - A Review
DOI:
https://doi.org/10.37285/ijpsn.2022.15.3.9Abstract
Proliposome are phospholipid-based vesicular drug delivery systems that have specialized applications in drug delivery via various routes of administration. They are widely researched as potential carriers for improving bioavailability through oral administration of drugs with low bioavailability and are composed of the drug, phospholipid, and a water-soluble carrier or porous powder. The technology is based on the inherent ability of hydrated membrane lipids to form liposomal vesicles when exposed to water. It is specifically designed for molecular dispersion and delivery of hydrophilic and hydrophobic drugs to achieve good bioavailability, local, systemic effects, and site-specific drug delivery strategies. By utilizing phospholipids and various carriers, these vesicular systems play critical roles in improving bioavailability and solubility. An in-depth understanding of the physical and biological behavior of Proliposome is required for designing an effective delivery system that will increase drug availability at the anticipated site. Proliposome provide an opportunity to improve drug therapeutic action by modifying drug uptake mechanisms. The Proliposome approach was developed as a simple, repeatable, and dependable manufacturing technique for large-scale production of liposome dispersions. The present review discusses the use of Proliposome to improve the oral bioavailability of poorly water-soluble drugs, components for the formulation, effects of excipients, techniques for preparation, evaluation of Proliposome, and other key issues related to various routes of administration. Proliposome formulation is an alternative, novel solution for liposome stability.
Downloads
Metrics
Keywords:
Proliposomes, Vesicular system, Bioavailability, Phospholipids, Water soluble carriersDownloads
Published
How to Cite
Issue
Section
References
Aburahma, M. H., & Abdelbary, G. A. (2012). Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: Preparation, optimization, in vitro/in vivo evaluation. International Journal of Pharmaceutics, 422(1–2), 139–150. https://doi.org/10.1016/j.ijpharm.2011.10.043
Ahammed, V., Narayan, R., Paul, J., Nayak, Y., Roy, B., Shavi, G. V., & Nayak, U. Y. (2017). Development and in vivo evaluation of functionalized ritonavir proliposomes for lymphatic targeting. Life Sciences, 183, 11–20. https://doi.org/10.1016/j.lfs.2017.06.022
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1). https://doi.org/10.1186/1556-276X-8-102
Alves, G. P., & Santana, M. H. A. (2004). Phospholipid dry powders produced by spray drying processing: Structural, thermodynamic and physical properties. Powder Technology, 145(2), 139–148. https://doi.org/10.1016/j.powtec.2004.06.008
Amidon, G. L., Sinko, P. J., & Fleisher, D. (1988). Estimating Human Oral Fraction Dose Absorbed: A Correlation Using Rat Intestinal Membrane Permeability for Passive and Carrier-Mediated Compounds. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, 5(10), 651–654. https://doi.org/10.1023/A:1015927004752
Arregui, J. R., Kovvasu, S. P., & Betageri, G. V. (2018a). Daptomycin Proliposomes for Oral Delivery: Formulation, Characterization, and In Vivo Pharmacokinetics. AAPS PharmSciTech, 19(4), 1802–1809. https://doi.org/10.1208/s12249-018-0989-0
Arregui, J. R., Kovvasu, S. P., & Betageri, G. V. (2018b). Daptomycin Proliposomes for Oral Delivery: Formulation, Characterization, and In Vivo Pharmacokinetics. AAPS PharmSciTech, 19(4), 1802–1809. https://doi.org/10.1208/s12249-018-0989-0
Bai, C., Peng, H., Xiong, H., Liu, Y., Zhao, L., & Xiao, X. (2011). Carboxymethylchitosan-coated proliposomes containing coix seed oil: Characterisation, stability and in vitro release evaluation. Food Chemistry, 129(4), 1695–1702. https://doi.org/10.1016/j.foodchem.2011.06.033
Balimane, P. V., Han, Y. H., & Chong, S. (2006a). Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS Journal, 8(1), 1. https://doi.org/10.1208/aapsj080101
Balimane, P. V., Han, Y. H., & Chong, S. (2006b). Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS Journal, 8(1). https://doi.org/10.1208/aapsj080101
Basavaraj, S., & Betageri, G. V. (2014a). Improved oral delivery of resveratrol using proliposomal formulation: Investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opinion on Drug Delivery, 11(4), 493–503. https://doi.org/10.1517/17425247.2014.878701
Basavaraj, S., & Betageri, G. V. (2014b). Improved oral delivery of resveratrol using proliposomal formulation: Investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opinion on Drug Delivery, 11(4), 493–503. https://doi.org/10.1517/17425247.2014.878701
Betageri, G. V., Jenkins, S. A., & Parsons, D. L. (1993). Liposome drug delivery systems. Lancaster, Technomic Pub.
Bo-Young Hwang, Byung-Hwa Jung, Suk-Jae Chung, Min-Hwa Lee, C.-K. S. (1997). In vitro skin permeation of Nicotine from proliposomes. J Control Release, 49, 177–184.
Bobbala, S. K. R., & Veerareddy, P. R. (2012a). Formulation, evaluation, and pharmacokinetics of isradipine proliposomes for oral delivery. Journal of Liposome Research, 22(4), 285–294. https://doi.org/10.3109/08982104.2012.697067
Bobbala, S. K. R., & Veerareddy, P. R. (2012b). Formulation, evaluation, and pharmacokinetics of isradipine proliposomes for oral delivery. Journal of Liposome Research, 22(4), 285–294. https://doi.org/10.3109/08982104.2012.697067
Brocks, D. R., & Betageri, G. V. (2010). Enhanced oral absorption of halofantrine enantiomers after encapsulation in a proliposomal formulation. Journal of Pharmacy and Pharmacology, 54(8), 1049–1053. https://doi.org/10.1211/002235702320266190
Byeon, J. C., Lee, S. E., Kim, T. H., Ahn, J. Bin, Kim, D. H., Choi, J. S., & Park, J. S. (2019a). Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Delivery, 26(1), 216–225. https://doi.org/10.1080/10717544.2018.1551441
Byeon, J. C., Lee, S. E., Kim, T. H., Ahn, J. Bin, Kim, D. H., Choi, J. S., & Park, J. S. (2019b). Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Delivery, 26(1), 216–225. https://doi.org/10.1080/10717544.2018.1551441
Byung-Nak Ahn, Shin-Keun Kim, C.-K. S. (1995). Preparation and evaluation of proliposomes containing Propranolol Hydrochloride. J. Microencapsul., 12(4), 363–375.
Cannon, J., & Long, M. (2008). Emulsions, Microemulsions, and Lipid-Based Drug Delivery Systems for Drug Solubilization and Delivery—Part II. Water-Insoluble Drug Formulation, Second Edition, 227–254. https://doi.org/10.1201/9781420009552.ch11
Chaumeil, J. C. (1998). Micronization: A method of improving the bioavailability of poorly soluble drugs. Methods and Findings in Experimental and Clinical Pharmacology, 20(3), 211–215.
Chen, C. ‐M, & Alli, D. (1987). Use of fluidized bed in proliposome manufacturing. Journal of Pharmaceutical Sciences, 76(5), 419–419. https://doi.org/10.1002/jps.2600760517
Chobisa, D., Patel, K., Monpara, J., Patel, M., & Vavia, P. (2018). Development and characterization of an organic solvent free, proliposomal formulation of Busulfan using quality by design approach. International Journal of Pharmaceutics, 535(1–2), 360–370. https://doi.org/10.1016/j.ijpharm.2017.11.007
Chougule, M., Padhi, B., & Misra, A. (2008). Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech, 9(1), 47–53. https://doi.org/10.1208/s12249-007-9024-6
Chu, C., Tong, S. S., Xu, Y., Wang, L., Fu, M., Ge, Y. R., Yu, J. N., & Xu, X. M. (2011). Proliposomes for oral delivery of dehydrosilymarin: Preparation and evaluation in vitro and in vivo. Acta Pharmacologica Sinica, 32(7), 973–980. https://doi.org/10.1038/aps.2011.25
Colonna, C., Conti, B., Genta, I., & Alpar, O. H. (2008). Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. International Journal of Pharmaceutics, 364(1), 108–118. https://doi.org/10.1016/j.ijpharm.2008.07.034
Deo, M. R., Sant, V. P., Parekh, S. R., Khopade, A. J., & Banakar, U. V. (1997). Proliposome-based transdermal delivery of levonorgestrel. Journal of Biomaterials Applications, 12(1), 77–88. https://doi.org/10.1177/088532829701200105
Deshmukh, D. D., Ravis, W. R., & Betageri, G. V. (2008). Improved delivery of cromolyn from oral proliposomal beads. International Journal of Pharmaceutics, 358(1–2), 128–136. https://doi.org/10.1016/j.ijpharm.2008.02.026
Dipali, S. R., Kulkarni, S. B., & Betageri, G. V. (1996). Comparative Study of Separation of Non-encapsulated Drug from Unilamellar Liposomes by Various Methods. Journal of Pharmacy and Pharmacology, 48(11), 1112–1115. https://doi.org/10.1111/j.2042-7158.1996.tb03904.x
Dixit, P., Jain, D. K., & Dumbwani, J. (2012). Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. Journal of Pharmacological and Toxicological Methods, 65(1), 13–17. https://doi.org/10.1016/j.vascn.2011.11.001
Elezgaray, J., & Laguerre, M. (2006). A systematic method to derive force fields for coarse-grained simulations of phospholipids. Computer Physics Communications, 175(4), 264–268. https://doi.org/10.1016/j.cpc.2006.01.009
Elhissi, A. M. A., Karnam, K. K., Danesh-Azari, M.-R., Gill, H. S., & Taylor, K. M. G. (2010). Formulations generated from ethanol-based proliposomes for delivery via medical nebulizers. Journal of Pharmacy and Pharmacology, 58(7), 887–894. https://doi.org/10.1211/jpp.58.7.0002
Fei, X., Chen, X., Liang, G., Yue-Jian, C., Hao, W., Ning, G., & Jia-Bi, Z. (2009). Preparation, characterization, and biodistribution of breviscapine proliposomes in heart. Journal of Drug Targeting, 17(5), 408–414. https://doi.org/10.1080/10611860902913380
Florence, A. T., & Attwood, D. (2016). Physicochemical principles of pharmacy : in manufacture, formulation and clinical use / Alexander T. Florence, David Attwood.
Freag, M. S., Elnaggar, Y. S. R., & Abdallah, O. Y. (2013). Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: Optimization and ex vivo permeation. International Journal of Nanomedicine, 8, 2385–2397. https://doi.org/10.2147/IJN.S45231
Gala, R. P., Khan, I., Elhissi, A. M. A., & Alhnan, M. A. (2015). A comprehensive production method of self-cryoprotected nano-liposome powders. International Journal of Pharmaceutics, 486(1–2), 153–158. https://doi.org/10.1016/j.ijpharm.2015.03.038
Gangishetty, H., Eedara, B. B., & Bandari, S. (2015). Development of ketoprofen loaded proliposomal powders for improved gastric absorption and gastric tolerance: In vitro and in situ evaluation. Pharmaceutical Development and Technology, 20(6), 641–651. https://doi.org/10.3109/10837450.2014.908306
Gireesh, T., Kuldeep, C., & Pramod, K. (2013). Liposomal current status, evaluation and recent advances. Int J Curr Pharm Res, 5, 4–14.
Gomez, A. I., Acosta, M. F., Muralidharan, P., Yuan, J. X. J., Black, S. M., Hayes, D., & Mansour, H. M. (2020). Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulmonary Pharmacology and Therapeutics, 64, 101975. https://doi.org/10.1016/j.pupt.2020.101975
Gupta, V., Barupal, A. K., & Ramteke, S. (2008). Formulation development and in vitro characterization of proliposomes for topical delivery of aceclofenac. Indian Journal of Pharmaceutical Sciences, 70(6), 768–775. https://doi.org/10.4103/0250-474X.49119
Hiremath, P. S., Soppimath, K. S., & Betageri, G. V. (2009). Proliposomes of exemestane for improved oral delivery: Formulation and in vitro evaluation using PAMPA, Caco-2 and rat intestine. International Journal of Pharmaceutics, 380(1–2), 96–104. https://doi.org/10.1016/j.ijpharm.2009.07.008
Hwang, B. Y., Jung, B. H., Chung, S. J., Lee, M. H., & Shim, C. K. (1997). In vitro skin permeation of nicotine from proliposomes. Journal of Controlled Release, 49(2–3), 177–184.
Janga, K. Y., Jukanti, R., Velpula, A., Sunkavalli, S., Bandari, S., Kandadi, P., & Veerareddy, P. R. (2012). Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. European Journal of Pharmaceutics and Biopharmaceutics, 80(2), 347–357. https://doi.org/10.1016/j.ejpb.2011.10.010
JCM, S. (1980). Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem, 104(10), 14.
Jessy, S., & Vinay, B. (2013). Proliposomes: A brief overview of novel delivery system. International Journal of Pharma and Bio Sciences, 4(1), 150–160.
Jung, B.H.; Chung, B.C.; Chung, S.J.; Lee, M.H.; Shim, C. K. (2000). Prolonged delivery of nicotine in rats via nasal administration of proliposomes. J. Control Release, 66(1), 73–79.
Karn, P. R., Jin, S. E., Lee, B. J., Sun, B. K., Kim, M. S., Sung, J. H., & Hwang, S. J. (2014). Preparation and evaluation of cyclosporine A-containing proliposomes: A comparison of the supercritical antisolvent process with the conventional film method. International Journal of Nanomedicine, 9(1), 5079–5091. https://doi.org/10.2147/IJN.S70340
Katare, O. P., Vyas, S. P., & Dixit, V. K. (1990a). Effervescent granule based proliposomes of ibuprofen. Journal of Microencapsulation, 7(4), 455–462. https://doi.org/10.3109/02652049009040467
Katare, O. P., Vyas, S. P., & Dixit, V. K. (1990b). Effervescent granule based proliposomes of ibuprofen. Journal of Microencapsulation, 7(4), 455–462. https://doi.org/10.3109/02652049009040467
Katare, O. P., Vyas, S. P., & Dixit, V. K. (1991a). Preparation and performance evaluation of plain proliposomal systems for cytoprotection. Journal of Microencapsulation, 8(3), 295–300. https://doi.org/10.3109/02652049109069555
Katare, O. P., Vyas, S. P., & Dixit, V. K. (1991b). Proliposomes of indomethacin for oral administration. Journal of Microencapsulation, 8(1), 1–7. https://doi.org/10.3109/02652049109021852
Khan, I., Lau, K., Bnyan, R., Houacine, C., Roberts, M., Isreb, A., Elhissi, A., & Yousaf, S. (2020). A Facile and Novel Approach to Manufacture Paclitaxel-Loaded Proliposome Tablet Formulations of Micro or Nano Vesicles for Nebulization. Pharmaceutical Research, 37(6). https://doi.org/10.1007/s11095-020-02840-w
Khan, I., Yousaf, S., Najlah, M., Ahmed, W., & Elhissi, A. (2021). Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer. Journal of Pharmaceutical Investigation, 51(1), 61–73. https://doi.org/10.1007/s40005-020-00495-8
Kim, K. K., & Pack, D. W. (2006). Microspheres for Drug Delivery. BioMEMS and Biomedical Nanotechnology, 19–50. https://doi.org/10.1007/978-0-387-25842-3_2
Kulkarni, S. B., Betageri, G. V., & Singh, M. (1995). Factors affecting microencapsulation of drugs in liposomes. Journal of Microencapsulation, 12(3), 229–246. https://doi.org/10.3109/02652049509010292
Kumar, R., Gupta, R. B., & Betageri, G. V. (2001). Formulation, characterization and in vitro release of glyburide from proliposomal beads. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 8(1), 25–27. https://doi.org/10.1080/107175401300002720
Kumara, B. C., Parthiban, S., Senthil Kumar, G. P., & Tamiz Mani, T. (2016). Formulation and Evaluation of Proliposomal Gel Containing Repaglinide Using Mannitol as Water Soluble Carrier. Imperial Journal of Interdisciplinary Research, 2(5), 1777–1786.
Kumara, B. C., Parthiban S, Senthil kumar GP, & Tamiz Mani T. (2015). Proliposome: A novel approach to carrier drug delivery system. . Int J Biopharm, 6(2), 98–106.
Kurakula, M., Srinivas, C., Kasturi, N., & Diwan, P. V. (2012). Formulation and Evaluation of Prednisolone Proliposomal Gel for Effective Topical Pharmacotherapy. International Journal of Pharmaceutical Sciences and Drug Research, 4(1), 35.
Lawrence, M. J., & Rees, G. D. (2012). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 64(SUPPL.), 175–193. https://doi.org/10.1016/j.addr.2012.09.018
Lee, H. J., Ahn, B. N., Yoon, E. J., Paik, W. H., Shim, C. K., & Lee, M. G. (1995). Pharmacokinetics and tissue distribution of adriamycin and adriamycinol after intravenous administration of adriamycin-loaded neutral proliposomes to rats. International Journal of Pharmaceutics, 121(1), 1–10.
Liu, G., Wang, W., Wang, H., & Jiang, Y. (2014). Preparation of 10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process. Chemical Engineering Journal, 243, 289–296. https://doi.org/10.1016/j.cej.2014.01.023
Lo, Y. L., Tsai, J. C., & Kuo, J. H. (2004). Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. Journal of Controlled Release, 94(2–3), 259–272. https://doi.org/10.1016/j.jconrel.2003.09.019
Mallesh, K., Pasula, N., & Kumar Ranjith, C. P. (2012). Piroxicam proliposomal gel: a novel approach for tropical delivery. Journal of Pharmacy Research, 5(3), 1755–1763.
Manani, H., Prajapati, B., & Patel, R. (2016). Review of Preliposomes as novel drug delivery system. The Pharma Innovation Journal, 4(3), Part-B.
Manjula D, Shabaraya AR, S. S. (2014). Topical delivery of fenoprofen proliposomes: preparation, evaluation and in vitro release. Int J Pha Sc In, 3, 6–12.
Mashaghi, A., Partovi-Azar, P., Jadidi, T., Nafari, N., Maass, P., Tabar, M. R. R., Bonn, M., & Bakker, H. J. (2012). Hydration strongly affects the molecular and electronic structure of membrane phospholipids. Journal of Chemical Physics, 136(11), 114709. https://doi.org/10.1063/1.3694280
Merisko-Liversidge, E. M., & Liversidge, G. G. (2008). Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds. Toxicologic Pathology, 36(1), 43–48. https://doi.org/10.1177/0192623307310946
Michael J, Rathbone, Jonathan Hadgraft, M. S. R. (2003). Modified-Release Drug Delivery Technology. Marcel Dekker, Inc. New York (Basel).
Moghimipour, E., & Handali, S. (2012). Utilization of thin film method for preparation of celecoxib loaded liposomes. Advanced Pharmaceutical Bulletin, 2(1), 93–98. https://doi.org/10.5681/apb.2012.013
Muneer, S., Masood, Z., Butt, S., Anjum, S., Zainab, H., Anwar, N., & Ahmad, N. (2017). Proliposomes as Pharmaceutical Drug Delivery System: A Brief Review. Journal of Textile Science & Engineering, 08(03), 1–5. https://doi.org/10.4172/2157-7439.1000448
Najlah, M., Jain, M., Wan, K. W., Ahmed, W., Albed Alhnan, M., Phoenix, D. A., Taylor, K. M. G., & Elhissi, A. (2018). Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. Journal of Liposome Research, 28(1), 74–85. https://doi.org/10.1080/08982104.2016.1259628
Nalla, P., Bagam, S., Eedara, B. B., & Dhurke, R. (2015). Formulation and evaluation of domperidone oral proliposomal powders. Int. J. Pharm. Technol. Res, 7, 108–118.
Nee Ling, S. S., Magosso, E., Khan, N. A. K., Kah, H. Y., & Barker, S. A. (2006a). Enhanced oral unavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Development and Industrial Pharmacy, 32(3), 335–345. https://doi.org/10.1080/03639040500519102
Nee Ling, S. S., Magosso, E., Khan, N. A. K., Kah, H. Y., & Barker, S. A. (2006b). Enhanced oral unavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Development and Industrial Pharmacy, 32(3), 335–345. https://doi.org/10.1080/03639040500519102
Nekkanti, V., Venkatesan, N., & Betageri, G. (2015). Proliposomes for Oral Delivery: Progress and Challenges. Current Pharmaceutical Biotechnology, 16(4), 303–312. https://doi.org/10.2174/1389201016666150118134256
Nekkanti, V., Wang, Z., & Betageri, G. V. (2016). Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System. AAPS PharmSciTech, 17(4), 851–862. https://doi.org/10.1208/s12249-015-0388-8
Ning, M. Y., Guo, Y. Z., Pan, H. Z., Yu, H. M., & Gu, Z. W. (2005). Preparation and evaluation of proliposomes containing clotrimazole. Chemical and Pharmaceutical Bulletin, 53(6), 620–624. https://doi.org/10.1248/cpb.53.620
Park, J. M., Ahn, B. N, Yoon, E. J., Lee, M. G., Shim, C. K, & Kim, C. K. (1994). The pharmacokinetics of methotrexate after intravenous administration of methotrexate‐loaded proliposomes to rats. Biopharmaceutics & Drug Disposition, 15(5), 391–407. https://doi.org/10.1002/BDD.2510150506
Parmar, G., Bala, R., Seth, N., & Banerjee, A. (2015). Proliposome: Novel drug delivery system. World J Pharm Res, 4(7), 679–692.
Patil-Gadhe, A., & Pokharkar, V. (2014). Single step spray drying method to develop proliposomes for inhalation: A systematic study based on quality by design approach. Pulmonary Pharmacology and Therapeutics, 27(2), 197–207. https://doi.org/10.1016/j.pupt.2013.07.006
Patrekar, P., Inamdar, S., … S. M.-T. P., & 2015, undefined. (2015). Ethosomes as novel drug delivery system: A review. The Pharma Innovation Journal, 4(9), 10–21. www.thepharmajournal.com
Payne, N. I., Cosgrove, R. F., Green, A. P., & Liu, L. (1987). In‐vivo studies of amphotericin B liposomes derived from proliposomes: effect of formulation on toxicity and tissue disposition of the drug in mice. Journal of Pharmacy and Pharmacology, 39(1), 24–28.
Payne, N. I., Browning, I., & Hynes, C. A. (1986). Characterization of proliposomes. Journal of Pharmaceutical Sciences, 75(4), 330–333. https://doi.org/10.1002/jps.2600750403
Potluri, P., & Betageri, G. V. (2006). Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 13(3), 227–232. https://doi.org/10.1080/10717540500395007
Priyanka, P. (2013). Design and evaluation of tazarotene loaded liposome gel for effective treatment of psoriasis and acne. J Biomed Pharm Res, 2, 19–29.
Ravis, W. R., & Feldman, S. (1979). Effect of enzyme‐inducing and enzyme‐inhibiting agents on drug absorption II: Influence of proadifen on 3‐O‐methylglucose transport in rats. Journal of Pharmaceutical Sciences, 68(8), 945–949. https://doi.org/10.1002/jps.2600680807
Rojanarat, W., Nakpheng, T., Thawithong, E., Yanyium, N., & Srichana, T. (2012). Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Delivery, 19(7), 334–345. https://doi.org/10.3109/10717544.2012.721144
Rojanarat, Wipaporn, Changsan, N., Tawithong, E., Pinsuwan, S., Chan, H. K., & Srichana, T. (2011). Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies. International Journal of Molecular Sciences, 12(7), 4414–4434. https://doi.org/10.3390/ijms12074414
Rojanarat, Wipaporn, Nakpheng, T., Thawithong, E., Yanyium, N., & Srichana, T. (2012). Levofloxacin-Proliposomes: Opportunities for Use in Lung Tuberculosis. Pharmaceutics, 4(3), 385–412. https://doi.org/10.3390/pharmaceutics4030385
Rong LJBC, S. Y. (2008). Liposomes in solubilisation. In Water-Insoluble drug formulation (2nd edition). CRC Press: Boca Raton, FL, USA.
Sandhya, K. V., Devi, G. S., & Mathew, S. T. (2008). Liposomal formulations of serratiopeptidase: In vitro studies using PAMPA and Caco-2 models. Molecular Pharmaceutics, 5(1), 92–97. https://doi.org/10.1021/mp700090r
Naseeb Basha Shaik, Shakelli, D., Lakshmi PK, L., & Rao VV, B. (2020). Formulation and Evaluation of Dolutegravir Proliposomal Powder for Pediatric HIV Patients. International Journal of Pharmaceutical Investigation, 10(4), 471–478. https://doi.org/10.5530/ijpi.2020.4.83
Shaveta Sharma, Anup Sharma, Ankita Sharma, Peeyush Kaushik, U. K. J. (2017). Preparation and Evaluation of Proliposomes Containing Glibenclamide. The Pharmaceutical and Chemical Journal, 4(5), 1–7.
Shruthi M. V., Parthiban S., Senthilkumar G. P., Tamizmani, T. (2014). Evaluation of potential hypoglycemic activity of proliposomal gel containing Metformin hydrochloride. Asian J Res Biol Pharm Sci, 2(2), 77–88.
Singh, N., Kushwaha, P., Ahmad, U., & Abdullah, M. (2019a). Proliposomas: Una aproximación para el desarrollo de liposoma estables. Ars Pharmaceutica (Internet), 60(4), 231–240. https://doi.org/10.30827/ars.v60i4.8517
Singh, N., Kushwaha, P., Ahmad, U., & Abdullah, M. (2019b). Proliposomes: An Approach for the Development of Stable Liposome. Ars Pharmaceutica, 60(4), 231–240. https://www.readcube.com/articles/10.30827%2Fars.v60i4.8517%0Ahttps://www.readcube.com/articles/10.30827/ars.v60i4.8517
Sivasankar M., K. T. (2011). Liposomes–The future of formulations. International Journal of Research in Pharmacy and Chemistry, 1(2), 259–267.
Song, K. H., Chung, S. J., & Shim, C. K. (2002). Preparation and evaluation of proliposomes containing salmon calcitonin. Journal of Controlled Release, 84(1–2), 27–37. https://doi.org/10.1016/S0168-3659(02)00238-9
Song, K. H., Chung, S. J., & Shim, C. K. (2005). Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts. Journal of Controlled Release, 106(3), 298–308. https://doi.org/10.1016/j.jconrel.2005.05.016
Sun, C., Wang, J., Liu, J., Qiu, L., Zhang, W., & Zhang, L. (2013). Liquid proliposomes of nimodipine drug delivery system: Preparation, characterization, and pharmacokinetics. AAPS PharmSciTech, 14(1), 332–338. https://doi.org/10.1208/s12249-013-9924-6
Sweeney, L. G., Wang, Z., Loebenberg, R., Wong, J. P., Lange, C. F., & Finlay, W. H. (2005). Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. International Journal of Pharmaceutics, 305(1–2), 180–185. https://doi.org/10.1016/j.ijpharm.2005.09.010
Tantisripreecha, C., Jaturanpinyo, M., Panyarachun, B., & Sarisuta, N. (2012). Development of delayed-release proliposomes tablets for oral protein drug delivery. Drug Development and Industrial Pharmacy, 38(6), 718–727. https://doi.org/10.3109/03639045.2011.623168
Velpula, A., Jukanti, R., Janga, K. Y., Sunkavalli, S., Bandari, S., Kandadi, P., & Veerareddy, P. R. (2013). Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: Effect of surface charge. Drug Development and Industrial Pharmacy, 39(12), 1895–1906. https://doi.org/10.3109/03639045.2012.670641
Wells, J. I. (1988). The physicochemical properties of drug substances. Pharmaceutical Preformulation :, 79(6), 8247.
Williams, H. D., Trevaskis, N. L., Charman, S. A., Shanker, R. M., Charman, W. N., Pouton, C. W., & Porter, C. J. H. (2013). Strategies to address low drug solubility in discovery and development. Pharmacological Reviews, 65(1), 315–499. https://doi.org/10.1124/pr.112.005660
Xia, F., Hu, D., Jin, H., Zhao, Y., & Liang, J. (2012). Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids, 26(2), 456–463. https://doi.org/10.1016/j.foodhyd.2010.11.014
Xia, F., Jin, H., Zhao, Y., & Guo, X. (2011). Supercritical antisolvent-based technology for preparation of vitamin D 3 proliposome and its characteristics. Chinese Journal of Chemical Engineering, 19(6), 1039–1046. https://doi.org/10.1016/S1004-9541(11)60089-X
Xiao, Y. Y., Song, Y. M., Chen, Z. P., & Ping, Q. N. (2005). Preparation of silymarin proliposomes and its pharmacokinetics in rats. Acta Pharmaceutica Sinica, 40(8), 758–763.
Xu, H., He, L., Nie, S., Guan, J., Zhang, X., Yang, X., & Pan, W. (2009). Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. Journal of Controlled Release, 140(1), 61–68. https://doi.org/10.1016/j.jconrel.2009.07.014
Yan-yu, X., Yun-mei, S., Zhi-peng, C., & Qi-neng, P. (2006). Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. International Journal of Pharmaceutics, 319(1–2), 162–168.
Zhang, M., Wang, Q., Wan, K. W., Ahmed, W., Phoenix, D. A., Zhang, Z., Elrayess, M. A., Elhissi, A., & Sun, X. (2019). Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. International Journal of Pharmaceutics, 566(April), 185–193. https://doi.org/10.1016/j.ijpharm.2019.04.078
Zhao, L. P., Xiong, H., Peng, H., Wang, Q., Han, D., Bai, C. Q., Liu, Y. Z., Shi, S. H., & Deng, B. (2011). PEG-coated lyophilized proliposomes: Preparation, characterizations and in vitro release evaluation of vitamin E. European Food Research and Technology, 232(4), 647–654. https://doi.org/10.1007/s00217-011-1429-5.