Recent Advances in Antibiotic Hybrids

DOI:

https://doi.org/10.37285/ijpsn.2020.13.1.1

Authors

  • Zaber Unnisa
  • Vijaya Bhargavi M
  • Nagma Begum
  • Sumakanth M

Abstract

Antibiotics are the main stay for the treatment of serious bacterial infections. However, there is great concern about widespread use of antibiotics leading to drug resistance. Hybrid antibiotics were obtained by combining structural genes of antibiotic procedures that do not occur in nature. Few of these substances were more efficacious against pathogenic microorganisms resistant produced by the parent strains. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent, also we elaborated the developments, concepts & challenges in the future use of antibiotic hybrids. To overcome drug resistance and to extend the spectrum of existing antibiotics, Antibiotic hybrids play an important role as the magic bullet in bacteria. The recent activity in the design and development of dual-action hybrid drugs with a non-cleavable linker & explored newly developed synergistic and antagonistic hybrid compounds to reduce resistance development are discussed. As certain compounds are entering clinical trials, the approach of dual-acting hybrid antibiotics holds significant current promise in overcoming existing resistance mechanisms.  

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2020-01-31

How to Cite

1.
Unnisa Z, M VB, Begum N, M S. Recent Advances in Antibiotic Hybrids. Scopus Indexed [Internet]. 2020 Jan. 31 [cited 2025 Jan. 22];13(1):4731-44. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/246

Issue

Section

Review Articles

References

Alacevic M (1963). Inter-specific recombination in Streptomyces. Nature 197 (4874): 1323-1323.
Ash C (1996). Antibiotic resistance: the new apocalypse. Trends in microbiology 4(10): 371-372.
Barbachyn MR (2008). Recent advances in the discovery of hybrid antibacterial agents. Annual reports in medicinal chemistry 43: 281-290.
Baldwin JE, Adlington RM, Basak A, Flitsch SL, Petursson S, Turner NJ and Ting HH (1986). Enzymatic synthesis of a new type of penicillin. Journal of the Chemical Society, Chemical Communications 12: 975-976.
Basak A and Pal R (2005). Synthesis of β-lactam nucleoside chimera via Kinugasa reaction and evaluation of their antibacterial activity. Bioorganic & medicinal chemistry letters 15(8): 2015-2018.
Becker B and Cooper MA (2012). Aminoglycoside antibiotics in the 21st century. ACS chemical biology 8(1): 105-115.
Blais J, Lewis SR, Krause KM and Benton BM (2012). Anti-staphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrobial agents and chemotherapy 56(3): 1584-1587.
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B and Bartlett J (2009). Bad bugs, no drugs: no Eskape! An update from the Infectious Diseases Society of America. Clinical infectious diseases 48(1): 1-12.
Breidenstein EB, de la Fuente-Nunez C and Hancock RE (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends in microbiology 19(8): 419-426.
Bremner JB, Ambrus JI and Samosorn S (2007). Dual action-based approaches to antibacterial agents. Current medicinal chemistry 14(13): 1459-1477.
Brotz-Oesterhelt H and Brunner NA (2008). How many modes of action should an antibiotic have. Current opinion in pharmacology 8(5): 564-573.
Chait R, Craney A and Kishony R (2007). Antibiotic interactions that select against resistance. Nature 446(7136): 668.
Cottarel G and Wierzbowski J (2007). Combination drugs, an emerging option for antibacterial therapy. Trends in biotechnology 25(12): 547- 555.
Dotzlaf JE and Yeh WK (1987). Co-purification and characterization of deacetoxy cephalosporin synthetase/hydroxylase from Cephalosporium acremonium. Journal of bacteriology 169(4): 1611-1618.
Fleming A (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza. British journal of experimental pathology 10(3): 226.
Gill EE, Franco OL and Hancock RE (2015). Antibiotic adjuvants: diverse strategies for controlling drug resistant pathogens. Chemical biology & drug design 85(1): 56-78.
Godfrey O, Ford L and Huber MLB (1978). Interspecies matings of Streptomyces fradiae with Streptomyces bikiniensis mediated byconventional and protoplast fusion techniques. Canadian journal of microbiology 24(8): 994-997.
Gomi S, Ikedia D, Nakamura H, Naganawa H, Yamashita F, Hotta K, Kondo S, Okami Y, Umezawa H and Iitaka Y (1984). Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. The Journal of antibiotics 37(11): 1491-1494.
Gorityala BK, Guchhait G, Fernando DM, Deo S, McKenna SA, Zhanel GG, Kumar A and Schweizer F (2016). Adjuvants based on hybrid antibiotics overcome resistance in Pseudomonas aeruginosa and enhance fluoroquinolone efficacy. Angewandte Chemie International Edition 55(2): 555-559.
Gould K (2016). Antibiotics: from pre-history to the present day. Journal of Anti-microbial Chemotherapy 71(3): 572-575.
Grindrod K (2013). How the threat of antibiotic apocalypse helped a pharmacist find her voice. Canadian Pharmacists Journal/Revue des Pharmaciens du Canada 146(3): 151-154.
Hancock RE, Farmer SW, Li ZS and Poole KEITH (1991). Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF pori of Escherichia coli. Antimicrobial agents and chemotherapy 35(7): 1309-1314.
Hopwood D, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss H. and Omura S (1985). Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314(6012): 642.
Hotta K, Yamashita F, Okami Y and Umezawa H (1985). New antibiotic-producing Streptomycetes, selected by antibiotic resistance as a marker. The Journal of antibiotics 38(1): 64-69.
Hurdle JG, O’neill AJ, Chopra I and Lee RE (2011). Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature Reviews Microbiology 9(1): 62.
Kalan L and Wright GD (2011). Antibiotic adjuvants: multi-component anti-infective strategies. Expert reviews in molecular medicine 13.
Katsube T, Echols R, Arjona Ferreira JC, Krenz HK, Berg JK and Galloway C (2017). Cefiderocol, a Siderophore Cephalosporin for Gram‐Negative Bacterial Infections: Pharmacokinetics and Safety in Subjects with Renal Impairment. The Journal of Clinical Pharmacology, 57(5):584-591.
Karoli T, Mamidyala SK, Zuegg J, Fry SR, Tee EH, Bradford TA, Madala PK, Huang JX, Ramu S, Butler MS and Cooper MA (2012). Structure aided design of chimeric antibiotics. Bioorganic & medicinal chemistry letters 22(7): 2428-2433.
Liang CH, Romero A, Rabuka D, Sgarbi PW, Marby KA, Duffield J, Yao S, Cheng ML, Ichikawa Y, Sears P and Hu C (2005). Structure–activity relationships of bivalent aminoglycosides and evaluation of their microbiological activities. Bio-organic & medicinal chemistry letters 15(8): 2123-2128.
Loewe S (1953). The problem of synergism and antagonism of combined drugs. Arzneimittel for schung 3: 285-290.
Long DD, Aggen JB, Christensen BG, Judice JK, Hegde SS, Kaniga K, Krause KM, Linsell MS, Moran EJ and Pace JL (2008). A multivalent approach to drug discovery for novel antibiotics. The Journal of antibiotics 61(10): 595.
Lyu Y, Yang X, Goswami S, Gorityala BK, Idowu T, Domalaon R, Zhanel GG, Shan A and Schweizer F (2017). Amphiphilic tobramycin–lysine conjugates sensitize multi drug resistant Gram-negative bacteria to rifampicin and minocycline. Journal of medicinal chemistry 60(9): 3684-3702.
Malpartida F and Hopwood DA (1984). Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309(5967): 462.
Mirdamadi-Tehrani J, Mitchell JI, Williams ST and Ritchie DA (1986). Genetic analysis of intra species recombinant formation by protoplast fusion with three species of Streptomyces. FEMS microbiology letters 36(2-3): 299-302.
Mitchison D.A (1980). Treatment of tuberculosis: the Mitchell lecture 1979. Journal of the Royal College of Physicians of London 14(2): 91.
Nisbet LJ (1982). Current strategies in the search for bioactive microbial metabolites. Journal of Chemical Technology and Biotechnology 32(1): 251-270.
O'Callaghan CH, Sykes RB and Staniforth SE (1976). A new cephalosporin with a dual mode of action. Antimicrobial agents and chemotherapy 10(2): 245-248.
Ogura M, Tanaka T, Furihata K, Shimazu A and Otake N (1986). Induction of antibiotic production with ethidium bromide in Streptomyces hygroscopicus. The Journal of antibiotics 39(10): 1443-1449.
Omura S, Ikedia H, Matsubara H and Sadakane N (1980). Hybrid biosynthesis and absolute configuration of macrolide antibiotic M-4365 G1. The Journal of antibiotics 33(12): 1570- 1572.
Omura S, Sadakane N, Tanaka Y and Matsubara H (1983). Communications to the editor Chimeramycins: New Macrolide Antibiotics produced by Hybrid biosynthesis. The Journal of antibiotics 36(7): 927-930.
Pokrovskaya V and Baasov T (2010). Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert opinion on drug discovery 5(9): 883-902.
Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y and Mor A (2007). Improved antimicrobial peptides based on acyl-lysine oligomers. Nature biotechnology 25(6): 657.
Sadakane N, Tanaka Y and Omura (1982). Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms. The Journal of antibiotics 35(6): 680- 687.
Samson SM, Dotzlaf JE, Slisz ML, Becker GW, Van Frank RM, Veal LE, Yeh WK, Miller JR, Queener SW and Ingolia TD (1987). Cloning and expression of the fungal expandase or hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology 5(11): 1207.
Schatz A, Bugle E and Waksman SA (1944). Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria. Proceedings of the Society for Experimental Biology and Medicine 55(1): 66-69.
Schlegel B, Fleck WF and Fleck WF (1980). New anthracycline antibiotics produced by inter-specific recombinants of streptomycetes. I. Selection of Streptomyces violaceus subsp. iremyceticus, an iremycin producing subspecies. Zeitschrift fu rallgemeine Mikrobiologie 20(8): 527-530.
Selvakumar N, Kumar GS, Azhagan AM, Rajulu GG, Sharma S, Kumar MS, Das J, Iqbal J and Trehan S (2007). Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. European Journal of medicinal chemistry 42(4): 538-543.
Tevyashova AN, Olsufyeva EN and Preobrazhenskaya MN (2015). Design of dual action antibiotics as an approach to search for new promising drugs. Russian Chemical Reviews 84(1): 61.
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M and Titz A (2016). Novel strategies for the treatment of Pseudomonas aeruginosa infections. Journal of medicinal chemistry 59(13): 5929-5969.
Wolfe S, Demain AL, Jensen SE and Westlake DW (1984). Enzymatic approach to syntheses of unnatural beta-lactams. Science 226(4681): 386-1392.
Yang X, Goswami S, Gorityala BK, Domalaon R, Lyu Y, Kumar A, Zhanel GG and Schweizer F (2017). A tobramycin vector enhances synergy and efficacy of efflux pump inhibitors against multidrug-resistant Gram-negative bacteria. Journal of medicinal chemistry 60(9): 3913-3932.
Yeh PJ, Hegreness MJ, Aiden AP et al (2009). Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiology 7(6): 460-6.
Zhang FY, Du GJ, Zhang L, Zhang CL, Lu WL and Liang W (2009). Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharmaceutical research 26(4): 914-925.
Zheng T and Nolan EM (2014). Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. Journal of the American Chemical Society 136(27): 9677-9691