Nanosuspension: A New Horizon in the Drug Delivery System

DOI:

https://doi.org/10.37285/ijpsn.2022.15.5.9

Authors

  • Laxmikant Zawar
  • Gaurav Patil H R patel Institute of Pharmaceutical Education and Research
  • Nitin Shirsath Assistant Professor, H R Patel Institute of Pharmaceutical Education & Research
  • Piyush Bafna Assistant Professor, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur

Abstract

Solubility is one of the major concerns in a lot of drug formulations. Since the majority of new drug molecules belong to the BCS II (Biopharmaceutical Classification of Drug) they often lead to poor bioavailability and ultimately affect the drug's effectiveness. The majority of new drug molecules are insoluble and hence poorly bioavailable. Because of these limitations, the proportion of newly discovered drugs reaching the market is decreasing. Nano-suspension emerges as one of the novel solutions for these problems. As it helps in delivering poorly water-soluble drugs, due to their all-around features and unique advantages. The distinctive features of nanosuspensions allow them to be used in a variety of dosage forms, including mucoadhesive hydrogels, nanogels, etc. The present review article provides information regarding the introduction to nanosuspensions, the advantages, and disadvantages of nanosuspensions, different methods of their preparations, and numerous practical applications in drug delivery.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Nanosuspension, Dissolution, Surfactant, Solubility, Bioavailability

Published

2022-10-01

How to Cite

1.
Zawar L, Patil G, Shirsath N, Bafna P. Nanosuspension: A New Horizon in the Drug Delivery System. Scopus Indexed [Internet]. 2022 Oct. 1 [cited 2024 Nov. 20];15(5):6169-7. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/2485

References

Agrawal, Y., & Patel, V. (2011). Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2(2), 81. https://doi.org/10.4103/2231-4040.82950

Ahlin, P., K. J., & S.-K. J. (1998). Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions. Acta Pharmaceutica (Zagreb), 48(4), 259–267.

Arunkumar, N., Deecaraman, M., & Rani, C. (2009). Nanosuspension technology and its applications in drug delivery. In Asian Journal of Pharmaceutics (Vol. 3, Issue 3, pp. 168–173). https://doi.org/10.4103/0973-8398.56293

Ashish Kumar Verma*, & M.C Bindal. (2012). Nanosuspensions: Advantages and disadvantages. Indian Journal of Novel Drug Delivery, 4(3), 179–188.

Beck-Broichsitter, M., Merkel, O. M., & Kissel, T. (2012). Controlled pulmonary drug and gene delivery using polymeric nano-carriers. In Journal of Controlled Release (Vol. 161, Issue 2, pp. 214–224). https://doi.org/10.1016/j.jconrel.2011.12.004

Bhalla, S. (2007). Parenteral drug delivery.

Bhargavi, R. (2011). A Technical Review of Nanosuspensions. In International Journal of Pharmacy&Technology IJPT (Vol. 3, Issue 3). www.ijptonline.com

Bhowmik, D., Harish1, G., Duraivel, S., Pragathi Kumar, B., Raghuvanshi, V., & Sampath Kumar, K. P. (2013). Nanosuspension-A Novel Approaches In Drug Delivery System. The Pharma Innovation-Journal, 1(12).

www.thepharmajournal.com

Borgström, L. (2001). The importance of the device in asthma therapy. Respiratory Medicine, 95 Suppl B. https://doi.org/10.1053/rmed.2001.1143

Chakote, P., Lakshmi, P., & Kumar, G. A. (n.d.). Nano Suspension Technology: A Review Nanosuspension Technology: A Review.

Chang, C.-M., & Bodmeier, R. (1998). Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. In International Journal of Pharmaceutics (Vol. 173).

Chen, X., Young, T. J., Sarkari, M., Williams Iii, R. O., & Johnston, K. P. (2002). Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. In International Journal of Pharmaceutics (Vol. 242). www.elsevier.com/locate/ijpharm

Chen, Y., Liu, J., Yang, X., Zhao, X., & Xu, H. (2010). Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. Journal of Pharmacy and Pharmacology, 57(2), 259–264. https://doi.org/10.1211/0022357055407

Chingunpituk, J. (2007). Nanosuspension Technology for Drug Delivery. In Walailak J Sci & Tech (Vol. 4, Issue 2).

Chow, S. F., Wan, K. Y., Cheng, K. K., Wong, K. W., Sun, C. C., Baum, L., & Chow, A. H. L. (2015). Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. European Journal of Pharmaceutics and Biopharmaceutics, 94, 436–449. https://doi.org/10.1016/j.ejpb.2015.06.022

Cornellà, J., Suárez, R., Carloni, R., & Melchiorri, C. (2006). Grasping force optimization using dual methods. IFAC Proceedings Volumes (IFAC-PapersOnline), 8(PART 1).

https://doi.org/10.3182/20060906-3-it-2910.00105

Courrier, H. M., Butz, N., & Vandamme, T. F. (2002). Pulmonary drug delivery systems: Recent developments and prospects. In Critical Reviews in Therapeutic Drug Carrier Systems (Vol. 19, Issues 4–5, pp. 425–498).

https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i45.40

Dearn, A. R. (2000). United States Patent (Patent No. 6,018,080).

Dhiman, S. , & T. G. S. (2011). Nanosuspension: A recent approach for nano drug delivery system. International Journal of Current Pharmaceutical Research, 3(4), 96–101.

Èller, R. H. M., Èder, K. M., & Gohla, S. (n.d.). Solid lipid nanoparticles (SLN) for controlled drug delivery ± a review of the state of the art. www.elsevier.com/locate/ejphabio

Gabor, F., Fillafer, C., Neutsch, L., Ratzinger, G., & Wirth, M. (2010). Improving oral delivery. In Handbook of Experimental Pharmacology (Vol. 197, pp. 345–398). https://doi.org/10.1007/978-3-642-00477-3_12

Gao, L., Zhang, D., & Chen, M. (2008). Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. In Journal of Nanoparticle Research (Vol. 10, Issue 5, pp. 845–862). https://doi.org/10.1007/s11051-008-9357-4

Hanafy, A., Spahn-Langguth, H., Vergnault, G., Grenier, P., Tubic Grozdanis, M., Lenhardt, T., & Langguth, P. (2007). Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. In Advanced Drug Delivery Reviews (Vol. 59, Issue 6, pp. 419–426). https://doi.org/10.1016/j.addr.2007.04.005

Hernández-Trejo, N., Kayser, O., Steckel, H., & Müller, R. H. (2005). Characterization of nebulized buparvaquone nanosuspensions - Effect of nebulization technology. Journal of Drug Targeting, 13(8–9), 499–507.

https://doi.org/10.1080/10611860500353245

Itoh, K. , Pongpeerapat, A. , Tozuka, Y. , Oguchi, T. , &, & Yamamoto, K. (2003). Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. In Chemical and pharmaceutical bulletin (Vol. 51, Issue 2, pp. 171–174).

Jacob, S., Nair, A. B., & Shah, J. (2020). Emerging role of nanosuspensions in drug delivery systems. In Biomaterials Research (Vol. 24, Issue 1). BioMed Central Ltd.

https://doi.org/10.1186/s40824-020-0184-8

Jacobs, C., Kayser, O., & Mü, R. H. (2001a). Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. In International Journal of Pharmaceutics (Vol. 214).

www.elsevier.com/locate/ijpharm

Jacobs, C., Kayser, O., & Mü, R. H. (2001b). Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. In International Journal of Pharmaceutics (Vol. 214). www.elsevier.com/locate/ijpharm

Jacobs, C., & Müller, R. H. (2002). Production and Characterization of a Budesonide Nanosuspension for Pulmonary Administration.

Jain, K. K. (n.d.). Drug Delivery Systems-An Overview.

Jannoo, K., Teerapatsakul, C., Punyanut, A., & Pasanphan, W. (2015). Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies. Radiation Physics and Chemistry, 112, 177–188.

https://doi.org/10.1016/j.radphyschem.2015.03.035

Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B., & Zhang, M. (2014). Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 62, 595–601. https://doi.org/10.1016/j.foodres.2014.04.022

Johnson, B. K., & Prud’homme, R. K. (n.d.). Chemical Processing and Micromixing in Confined Impinging Jets.

Johnson, B. K., & Prud’homme, R. K. (2003a). Flash NanoPrecipitation of Organic Actives and Block Copolymers using a Confined Impinging Jets Mixer. Australian Journal of Chemistry, 56(10), 1021–1024.

https://doi.org/10.1071/CH03115

Johnson, B. K., & Prud’homme, R. K. (2003b). Mechanism for rapid self-assembly of block copolymer nanoparticles. Physical Review Letters, 91(11). https://doi.org/10.1103/PhysRevLett.91.118302

Kalpesh S. Wagh*, Satish K. Patil, Anup K. Akarte, & Dheeraj T. Baviskar. (2011). Nanosuspension - A New Approach of Bioavailability Enhancement. International Journal of Pharmaceutical Sciences Review and Research, 8(2), 61–65.

Keck, C. M., & Müller, R. H. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 62, Issue 1, pp. 3–16).

https://doi.org/10.1016/j.ejpb.2005.05.009

Kitayama, H., Yoshimura, Y., So, M., Sakurai, K., Yagi, H., & Goto, Y. (2013). A common mechanism underlying amyloid fibrillation and protein crystallization revealed by the effects of ultrasonication. Biochimica et Biophysica Acta - Proteins and Proteomics, 1834(12), 2640–2646. https://doi.org/10.1016/j.bbapap.2013.09.016

Kocbek, P., Baumgartner, S., & Kristl, J. (2006). Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. International Journal of Pharmaceutics, 312(1–2), 179–186.

https://doi.org/10.1016/j.ijpharm.2006.01.008

Kohno, S., Otsuboa, T., Tanakab, E., Maruyamab, K., Hara’, K., & %wvd, ". (1997). Amphotericin B encapsulated in polyethylene glycol-immuno-liposomes for infectious diseases. In Advanced Drug Delivery Reviews (Vol. 24).

Lai, F., Sinico, C., Ennas, G., Marongiu, F., Marongiu, G., & Fadda, A. M. (2009). Diclofenac nanosuspensions: Influence of preparation procedure and crystal form on drug dissolution behaviour. International Journal of Pharmaceutics, 373(1–2), 124–132.

https://doi.org/10.1016/j.ijpharm.2009.01.024

Lee, L. Y., Wang, C. H., & Smith, K. A. (2008). Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. Journal of Controlled Release, 125(2), 96–106.

https://doi.org/10.1016/j.jconrel.2007.10.002

Liao, X., & Wiedmann, T. S. (2003). Solubilization of Cationic Drugs in Lung Surfactant.

Lince, F., Marchisio, D. L., & Barresi, A. A. (2009). Smart mixers and reactors for the production of pharmaceutical nanoparticles: Proof of concept. Chemical Engineering Research and Design, 87(4), 543–549.

https://doi.org/10.1016/j.cherd.2008.11.009

Liu, Y., Cheng, C., Liu, Y., Prud’homme, R. K., & Fox, R. O. (2008). Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science, 63(11), 2829–2842. https://doi.org/10.1016/j.ces.2007.10.020

Madgulkar, A., Bandivadekar, M., Shid, T., & Rao, S. (2016). Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: Clotrimazole. Drug Development and Industrial Pharmacy, 42(1), 28–38.

https://doi.org/10.3109/03639045.2015.1024683

Matteucci, M. E., Brettmann, B. K., Rogers, T. L., Elder, E. J., Williams, R. O., & Johnston, K. P. (2007). Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. Molecular Pharmaceutics, 4(5), 782–793. https://doi.org/10.1021/mp0700211

Mehnert, W., & Mader, K. (2001). Solid lipid nanoparticles Production, characterization and applications. In Advanced Drug Delivery Reviews (Vol. 47). www.elsevier.com/locate/drugdeliv

Merisko-Liversidge, E., Liversidge, G. G., & Cooper, E. R. (2003). Nanosizing: A formulation approach for poorly-water-soluble compounds. In European Journal of Pharmaceutical Sciences (Vol. 18, Issue 2, pp. 113–120).

https://doi.org/10.1016/S0928-0987(02)00251-8

Mohanta, G. P., & Tomlinson, B. (n.d.). Pharmacogenet ics of HMG-CoA reduct ase inhibit ors: exploring the pot ent ial for genot ype-based indiv…. www.ijpsdr.com

Möschwitzer, J., Achleitner, G., Pomper, H., & Müller, R. H. (2004). Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nano-suspension technology. European Journal of Pharmaceutics and Biopharmaceutics, 58(3), 615–619. https://doi.org/10.1016/j.ejpb.2004.03.022

Mü, R. H., & Jacobs, C. (2002). Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. In International Journal of Pharmaceutics (Vol. 237). www.elsevier.com/locate/ijpharm

Mü, R. H., & Peters, K. (1998). Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. In International Journal of Pharmaceutics (Vol. 160).

Muller, R. H., Becker, R., Kruss, B., & Peters, K. (1999). 54 Pharmaceutical Nanosuspensions For Medcament Administration as Systems with Increased Saturation Solubility and Rate of Solution 75 Inventors: 30 Foreign Application Priority Data (Vol. 858, Issue 45). PCT Pub.

Myerson, A. (2002). Handbook of industrial crystallization. Butterworth-Heinemann.

Nagarwal, R. C., Kant, S., Singh, P. N., Maiti, P., & Pandit, J. K. (2009). Polymeric nanoparticulate system: A potential approach for ocular drug delivery. In Journal of Controlled Release (Vol. 136, Issue 1, pp. 2–13).

https://doi.org/10.1016/j.jconrel.2008.12.018

Nagpal, M., Mudgil, M., Gupta, N., & Pawar, P. (2012). Nanotechnology: A new approach for ocular drug delivery system Miliaria-An Update View Project Nanoera of Dentistry-An Update View Project Nanotechnology: A New Approach for Ocular Drug Delivery System. In Article in International Journal of Pharmacy and Pharmaceutical Sciences.

https://www.researchgate.net/publication/272495532

Ojewole, E., Mackraj, I., Naidoo, P., & Govender, T. (2008). Exploring the use of novel drug delivery systems for antiretroviral drugs. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 70, Issue 3, pp. 697–710). https://doi.org/10.1016/j.ejpb.2008.06.020

Patel, C. M., Chakraborty, M., & Murthy, Z. V. P. (2014). Preparation of fenofibrate nanoparticles by combined stirred media milling and ultrasonication method. Ultrasonics Sonochemistry, 21(3), 1100–1107.

https://doi.org/10.1016/j.ultsonch.2013.12.001

Patravale, V. B., Date, A. A., & Kulkarni, R. M. (2010). Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy and Pharmacology, 56(7), 827–840.

https://doi.org/10.1211/0022357023691

Paun JS, & Tank HM. (2012). Nanosuspension: An Emerging Trend for Bioavailability Enhancement of Poorly Soluble Drugs. In Asian J. Pharm. Tech (Vol. 2). www.asianpharmaonline.org

Phromviyo, N., Swatsitang, E., & Chompoosor, A. (2014). Effect of a surface stabilizer on the formation of polyoxalate nanoparticles and their release profiles. Vacuum, 107, 208–212. https://doi.org/10.1016/j.vacuum.2014.02.004

Pignatello, R., Bucolo, C., Spedalieri, G., Maltese, A., & Puglisi, G. (2002). Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. In Biomaterials (Vol. 23).

Ponchel, G., Montisci, M.-J., Dembri, A., Durrer, C., & Duchke, D. (1997). Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract’. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 44).

Praveen Kumar, G., & Gopi Krishna, K. (2011). Nanosuspensions: The Solution to Deliver Hydrophobic Drugs. In International Journal of Drug Delivery (Vol. 3).

http://www.arjournals.org/index.php/ijdd/index

Russ, B., Liu, Y., & Prud’homme, R. K. (2010). Optimized descriptive model for micromixing in a vortex mixer. Chemical Engineering Communications, 197(8), 1068–1075.

https://doi.org/10.1080/00986440903412985

Saffoon, N., Uddin, R., Hasan Huda, N., & Bishwajit Sutradhar, K. (n.d.). Enhancement of Oral Bioavailability and Solid Dispersion: A Review. Journal of Applied Pharmaceutical Science, 2011(07), 13–20.

Sarkari, M., Brown, J., Chen, X., Swinnea, S., Williams Iii, R. O., & Johnston, K. P. (2002). Enhanced drug dissolution using evaporative precipitation into aqueous solution. In International Journal of Pharmaceutics (Vol. 243). www.elsevier.com/locate/ijpharm

Sastry, S. V. , Nyshadham, J. R. , &, & Fix, J. A. (2000). Recent technological advances in oral drug delivery - a review. Pharmaceutical Science & Technology Today, 3(4), 138–145.

Shekunov, B. Y., Chattopadhyay, P., Seitzinger, J., & Huff, R. (2006). Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharmaceutical Research, 23(1), 196–204.

https://doi.org/10.1007/s11095-005-8635-4

Shi, Y., Porter, W., Merdan, T., & Li, L. C. (2009). Recent advances in intravenous delivery of poorly water-soluble compounds. In Expert Opinion on Drug Delivery (Vol. 6, Issue 12, pp. 1261–1282). https://doi.org/10.1517/17425240903307423

Sipoli, C. C., Radaic, A., Santana, N., de Jesus, M. B., & de la Torre, L. G. (2015). Chitosan nanoparticles produced with the gradual temperature decrease technique for sustained gene delivery. Biochemical Engineering Journal, 103, 114–121.

https://doi.org/10.1016/j.bej.2015.06.017

Siva, K., Raju, R., Ansari, M. T., & Pattnaik, G. (2010). Nanosuspension: An Attempt to Enhance Bioavailability of Poorly Soluble Drugs.

https://www.researchgate.net/publication/222760430

Sugimoto, M., Okagaki, T., Narisawa, S., Koida, Y., & Nakajima, K. (1998). Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. In International Journal of Pharmaceutics (Vol. 160, Issue 9).

Sun, Z., Ma, C., Yang, L., Zu, Y., & Zhang, R. (2011). Production of ursolic acid nanoparticles by supercritical antisolvent precipitation. Advanced Materials Research, 233–235, 2210–2214. https://doi.org/10.4028/www.scientific.net/AMR.233-235.2210

Trotta, M., Gallarate, M., Carlotti, M. E., & Morel, S. (2003). Preparation of griseofulvin nanoparticles from water-dilutable microemulsions. Inter-national Journal of Pharmaceutics, 254(2), 235–242. https://doi.org/10.1016/S0378-5173(03)00029-2

Vaghela, A., J. M., L. H., & B. D. P. (2012). Nanosuspension technology. International Journal of Universal Pharmacy and Life Sciences, 2(2), 306–317.

VDN, S., & S. P. (2009). Nanosuspensions: A promising drug delivery systems. International Journal of Pharmaceutical Sciences and Nanotechnology, 2(4), 679–684.

Velmula, M., Pavuluri, P., Rajashekar, S., Uma, V., & Rao, M. (2015). Nanosuspension Technology for Poorly Soluble Drugs-A Review. In www.wjpps.com (Vol. 4). www.wjpps.com

Venkatesh, T., Reddy, A. K., Maheswari, J. U., Dalith, M. D., & Ashok Kumar, C. K. (n.d.). Nanosuspensions: Ideal Approach for the Drug Delivery of Poorly Water-Soluble Drugs. www.scholarsresearchlibrary.com

Wang, Y., Song, J., Chow, S. F., Chow, A. H. L., & Zheng, Y. (2015). Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. International Journal of Pharmaceutics, 494(1), 479–489. https://doi.org/10.1016/j.ijpharm.2015.08.052

Wongmekiat, A., Tozuka, Y., Oguchi, T., & Yamamoto, K. (2002). Formation of Fine Drug Particles by Cogrinding with Cyclodextrins. I. The Use of-Cyclodextrin Anhydrate and Hydrate.

Wu, W., He, W., Tan, Y., Tian, Z., Chen, L., Hu, F.-Q., & Wu, W. (2011). Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. International Journal of Nanomedicine, 521. https://doi.org/10.2147/ijn.s17282

Xia, D., Quan, P., Piao, H., Piao, H., Sun, S., Yin, Y., & Cui, F. (2010). Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhance-ment of dissolution and oral bioavailability. European Journal of Pharmaceutical Sciences, 40(4), 325–334.

https://doi.org/10.1016/j.ejps.2010.04.006

Yadollahi, R., Vasilev, K., & Simovic, S. (2015). Nanosuspension technologies for delivery of poorly soluble drugs. In Journal of Nanomaterials (Vol. 2015). Hindawi Limited.

https://doi.org/10.1155/2015/216375

Yonemochi, E., Kitahara, S., Maeda, S., Yamamura, S., Oguchi, T., & Yamamoto, K. (1999). Physicochemical properties of amorphous clarithromycin obtained by grinding and spray drying a a b c a. In European Journal of Pharmaceutical Sciences (Vol. 7).

Young, T. J., Mawson, S., Johnston, K. P., Henriksen, I. B., Pace, G. W., & Mishra, A. K. (2000). Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnology Progress, 16(3), 402–407.

https://doi.org/10.1021/bp000032q

Zabihi, F., Xin, N., Jia, J., Cheng, T., & Zhao, Y. (2015). Preparation of nano-curcumin with enhanced dissolution using ultrasonic-assisted supercritical anti-solvent technique. International Journal of Food Engineering, 11(5), 609–617. https://doi.org/10.1515/ijfe-2015-0105

Zabihi, F., Yang, M., Leng, Y., & Zhao, Y. (2015). PLGA-HPMC nanoparticles prepared by a modified supercritical anti-solvent technique for the controlled release of insulin. Journal of Supercritical Fluids, 99, 15–22.

https://doi.org/10.1016/j.supflu.2015.01.023

Zeng, L., & Weber, A. P. (2014). Aerosol synthesis of nanoporous silica particles with controlled pore size distribution. Journal of Aerosol Science, 76, 1–12. https://doi.org/10.1016/j.jaerosci.2014.05.003

Zili, Z., Sfar, S., & Fessi, H. (2005). Preparation and characterization of poly-ε-caprolactone nanoparticles containing griseofulvin. International Journal of Pharmaceutics, 294(1–2), 261–267. https://doi.org/10.1016/j.ijpharm.2005.01.020