Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia

Development of nanoparticles for the Novel anticancer therapeutic agents for AML

DOI:

https://doi.org/10.37285/ijpsn.2023.16.4.7

Authors

  • Ajay Bhagwat a:1:{s:5:"en_US";s:44:"Research Scholar at parul university gujarat";}
  • Rohit Doke Doke Department of Pharmaceutics, Samarth College of Pharmacy, Belhe, Pune
  • Santosh Ghule Department of Pharmaceutics, Samarth College of Pharmacy, Belhe, Pune
  • Bipin Gandhi Department of Pharmaceutics, Samarth College of Pharmacy, Belhe,Pune

Abstract

Acute myeloid leukaemia is becoming more predominant in blood cancer in geriatrics people groups. In 2017, four new therapeutic candidates have been approved by the FDA: Enasidenib, CPX 351, Midostaurin, and Gemtuzumab ozogamicin; with the approval of Venetoclax and Daurismo, additional advances were achieved in 2018. Ivosidenib and gilteritinib were also accepted as single-agent therapy in persistent and recurrent AML 2018. Most of the anticancer drugs belong to Biopharmaceutical classification system-II (BSC), and BCS class-IV has poor bioavailability because of solubility issues. We will overcome this problem by preparing nanoparticles of this drug by using different nanoparticle preparation methods.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Acute myeloid leukemia, Nanoparticle, Anticancer therapeutic agents, FLT3 inhibitors, Ionic gelation, emulsion-Solvent evaporation, Double Emulsion

Downloads

Published

2023-07-31

How to Cite

1.
Bhagwat A, Doke RD, Ghule S, Gandhi B. Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia: Development of nanoparticles for the Novel anticancer therapeutic agents for AML. Scopus Indexed [Internet]. 2023 Jul. 31 [cited 2024 Dec. 21];16(4):6894-906. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/3185

Issue

Section

Review Articles

References

Lagunas-Rangel, F. A., Chávez-Valencia, V., Gómez-Guijosa, M. Á. & Cortes-Penagos, C. Acute myeloid leukemia—genetic alterations and their clinical prognosis. Int. J. Hematol. Stem Cell Res. 2017; 11, 329–339.

Rubio-Jurado, B. et al. New biomarkers in non-Hodgkin lymphoma and acute leukemias. Advances in Clinical Chemistry vol. 96 (Elsevier Inc., 2020.

Yao, Y., Lin, X., Li, F., Jin, J. & Wang, H. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: analysis based on the global burden of disease study 2019. Biomed. Eng. Online 2022; 21, 1–16.

Dong, Y. et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 2020; 9, 1–11.

Lai, C., Doucette, K. & Norsworthy, K. Recent drug approvals for acute myeloid leukemia. J. Hematol. Oncol. 2019; 12, 1–20 .

Kantarjian, H. et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J 2021;.11,.

Nguyen, P., Cioc, A., Cerhan, J. R. & Warlick, E. Myelodysplastic Syndromes in a Population-Based Study. 2018; 140, 612–625.

Palmieri, R. et al. Therapeutic choice in older patients with acute myeloid leukemia: A matter of fitness. Cancers (Basel). 2020; 12, 1–19.

Estey, E. H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018; 93, 1267–1291.

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020; 25, 1–15.

Mansoori, G. A. & Soelaiman, T. A. F. Nanotechnology - An introduction for the standards community. J. ASTM Int. 2005; 2, 17–38.

Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.2019; 12, 908–931.

Baig, N., Kammakakam, I., Falath, W. & Kammakakam, I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv 2021;2, 1821–1871.

Patra, J. K. et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnology. 2018; 16, 1–33.

Gunasekaran, T., Haile, T., Nigusse, T. & Dhanaraju, M. D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed. 2014; 4, S1–S7.

De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine. 2008; 3, 133–149.

Mudshinge, S. R., Deore, A. B., Patil, S. & Bhalgat, C. M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J. 2011; 19, 129–141.

Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016; 116, 2602–2663.

Singh, R. & Lillard, J. W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009; 86, 215–223.

Chen, K. T. J., Gilabert-Oriol, R., Bally, M. B. & Leung, A. W. Y. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm. Res. 2019; 36.

Kumar, S., Dilbaghi, N., Saharan, R. & Bhanjana, G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. Bionanoscience. 2021; 2, 227–250.

Stanisic, D., Costa, A. F., Cruz, G., Durán, N. & Tasic, L. Applications of Flavonoids, With an Emphasis on Hesperidin, as Anticancer Prodrugs: Phytotherapy as an Alternative to Chemotherapy. Studies in Natural Products Chemistry 2018; vol. 58.

Idrees, H. et al. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020; 10, 1–22.

Kumari, A., Yadav, S. K. & Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces 2010; 75, 1–18.

Kwon, G. S. & Furgeson, D. Y. Biodegradable polymers for drug delivery systems. Biomed. Polym.2007; 15, 83–110.

Stewart, S. A., Domínguez-Robles, J., Donnelly, R. F. & Larrañeta, E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers (Basel). 2018; 10.

Grove, C. S. & Vassiliou, G. S. Acute myeloid leukaemia: A paradigm for the clonal evolution of cancer? DMM Dis. Model. Mech.7, 2014; 941–951.

Dekkers, F. et al. A two-mutation model of radiation-induced acute myeloid leukemia using historical mouse data. Radiat. Environ. Biophys. 2011; 50, 37–45.

Tayyab, M. Distinct Gene Mutations, their Prognostic Relevance and Molecularly Targeted Therapies in Acute Myeloid Leukemia (AML). J. Cancer Sci. Ther. 2014; 06, 337–349.

Masson, K. & Rönnstrand, L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell. Signal. 2009; 21, 1717–1726.

Grafone, T., Palmisano, M., Nicci, C. & Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012;6, 64–74.

Cueto, F. J. & Sancho, D. The flt3l/flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers (Basel). 2021; 13.

Liu, B., Tao, C., Wu, Z., Yao, H. & Wang, D. A. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J. Mater. Chem. B. 2022; 10, 1734–1753.

Roskoski, R. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res. 2015; 100, 1–23.

Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018; 17, 1–13.

Kazi, J. U. & Rönnstrand, L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev. 2019; 99, 1433–1466.

Takahashi, S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J. Hematol. Oncol. 2011; 4, 1–10.

García-Castro, J. et al. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J. Cell. Mol. Med. 2008; 12, 2552–2565.

Abdal Dayem, A., Choi, H. Y., Kim, J. H. & Cho, S. G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel). 2010; 2, 859–884.

Vaezifar, S. & Razavi, S. Effects of Some Parameters on Particle Size Distribution of Chitosan Nanoparticles Prepared by Ionic Gelation Method. 2013: doi:10.1007/s10876-013-0583-2.

Samrot, A. V., Burman, U., Philip, S. A., Shobana, N. & Chandrasekaran, K. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Informatics Med. Unlocked. 2018; 10, 159–182.

Pedroso-Santana, S. & Fleitas-Salazar, N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int. 2020; 69, 443–447.

Wang, Y., Li, P., Tran, T. T., Zhang, J. & Kong, L. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer. 2016; doi:10.3390/nano6020026.

Silva, M., Santini, A. & Souto, E. B. Polymeric Nanoparticles : Production ,. (2020).

Pal, S. L., Jana, U., Manna, P. K., Mohanta, G. P. & Manavalan, R. . J. Appl. Pharm. Sci. 2011; 01, 228–234.

Iqbal, M., Zafar, N., Fessi, H. & Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015; 496, 173–190.

Procopio, A. et al. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics. 2022; 14.

Vauthier, C. & Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm. Res. 2009; 26, 1025–1058.

Wang, Y., Li, P., Tran, T. T. D., Zhang, J. & Kong, L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6.

Jelvehgari, M. et al. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci.12, 1–14 (2017).

Bilati, U., Allémann, E. & Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005; 24, 67–75.

Manaia, E. B. et al. Physicochemical characterization of drug nanocarriers. Int. J. Nanomedicine. 2017; 12, 4991–5011.

Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018; 10, 12871–12934.

Dunne, M., Corrigan, O. I. & Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 2000; 21, 1659–1668.

Tscharnuter, W. Photon Correlation Spectroscopy in Particle Sizing. Encycl. Anal. Chem. 1–16 2000; doi:10.1002/9780470027318.a1512.

Pyrz, W. D. & Buttrey, D. J. Particle size determination using TEM: A discussion of image acquisition and analysis for the novice microscopist. Langmuir 2008; 24, 11350–11360.

Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. & Kim, J. A Comprehensive Review on the Synthesis , Characterization , and Biomedical Application of Platinum Nanoparticles. 2019.

Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016; 17.

Dufrêne, Y. F. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 2002; 184, 5205–5213.

Allison, D. P., Mortensen, N. P., Sullivan, C. J. & Doktycz, M. J. Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2, 2010; 618–634.

Betala, S., Mohan Varma, M. & Abbulu, K. Formulation and evaluation of polymeric nanoparticles of an antihypetensive drug for gastroretention. J. Drug Deliv. Ther. 2018; 8, 82–86.

Sun, S. Ben, Liu, P., Shao, F. M. & Miao, Q. L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int. J. Clin. Exp. Med. 2015; 8, 19670–19681.

Shelake, S. S., Patil, S. V., Patil, S. S. & Sangave, P. Formulation and evaluation of fenofibrate-loaded nanoparticles by precipitation method. Indian J. Pharm. Sci.2018; 80, 420–427.

Weng, J., Tong, H. H. Y. & Chow, S. F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics2020; 12, 1–18.

Palareti, G. et al. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 2016; 38, 42–49.

Antar, A. et al. Inhibition of FLT3 in AML: A focus on sorafenib. Bone Marrow Transplant. 2017; 52, 344–351.

Mori, M. et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs 2017; 35, 556–565.

Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013; 19, 202–208.

Gallogly, M. M. & Lazarus, H. M. Midostaurin: An emerging treatment for acute myeloid leukemia patients. J. Blood Med. 2016; 7, 73–83.

Buckwalter, M., Dowell, J. A., Korth-Bradley, J., Gorovits, B. & Mayer, P. R. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J. Clin. Pharmacol. 2004:44, 873–880.

Mondesir, J., Willekens, C., Touat, M. & de Botton, S. IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J. Blood Med. 2016; 7, 171–180.

Popovici-Muller, J. et al. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Med. Chem. Lett. 2018; 9, 300–305.

Medeiros, B. C. et al. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017; 31, 272–281.

Pollyea, D. A. et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia. 2019; 33, 2575–2584.

Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017; 130, 722–731.

Panigrahi, D., Sahu, P. K., Swain, S. & Verma, R. K. Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl. Sci.2021; 3.