Advancement in Generation and Application of Microfluidic Chip Technology
DOI:
https://doi.org/10.37285/ijpsn.2024.17.2.9Abstract
Microfluidics is an interdisciplinary topic of research that draws inspiration from other areas such as fluid dynamics, microelectronics, materials science, and physics. Microfluidics has made it possible to create microscale channels and chambers out of a broad variety of materials by borrowing ideas from a number of different fields. This has opened up exciting possibilities for the development of platforms of any size, shape, and geometry using a variety of approaches. One of the most significant advantages of microfluidics is its versatility in applications. Microfluidic chips can be used for a variety of purposes, such as incorporating nanoparticles, encapsulating and delivering drugs, targeting cells, analyzing cells, performing diagnostic tests, and cultivating cells. This adaptability has led to the development of several device-like systems for use in a range of settings. In this study, we explore cutting-edge novel applications for microfluidic and nanofabrication technologies. We examine current developments in the area of microfluidics and highlight their potential for usage in the medical industry. We pay special attention to digital microfluidics, a recently developed and very useful technique for illness diagnosis and monitoring. The originality of microfluidics is found in the fact that it allows for the miniaturization of complex systems and processes, paving the way for the creation of cutting-edge gadgets with wide-ranging practical applications. Microfluidics has the potential to transform various fields, including medicine, biotechnology, environmental monitoring, and more. The development of novel microfluidic platforms, coupled with advancements in digital microfluidics, promises to revolutionize the way we diagnose, treat, and monitor diseases.
Downloads
Metrics
Keywords:
Microfluidic devices, fabrication techniques, microfluidics, Nano fluidics, 3D printing, moldingPublished
How to Cite
Issue
Section
References
Hansen CL, Skordalakes E, Berger JM, Quake SR. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences. 2002 Dec 24;99(26):16531-6.
Hollerith H. The electrical tabulating machine. Journal of the Royal Statistical Society. 1894 Dec 1;57(4):678-89.
Simon J, Saffer S, Kim CJ. A liquid-filled microrelay with a moving mercury microdrop. Journal of Microelectromechanical systems. 1997 Sep;6(3):208-16.
Sen P, Kim CJ. Microscale liquid-metal switches—A review. IEEE Transactions on Industrial Electronics. 2008 Oct 31;56(4):1314-30.
Voit WF. Digital pneumatic logic using coded tapes. IBM Journal of Research and Development. 1965 Sep;9(5):418-21.
Prakash M, Gershenfeld N. Microfluidic bubble logic. Science. 2007 Feb 9;315(5813):832-5.
Fuerstman MJ, Garstecki P, Whitesides GM. Coding/decoding and reversibility of droplet trains in microfluidic networks. Science. 2007 Feb 9;315(5813):828-32.
Choi W, Hashimoto M, Ellerbee AK, Chen X, Bishop KJ, Garstecki P, Stone HA, Whitesides GM. Bubbles navigating through networks of microchannels. Lab on a Chip. 2011;11(23):3970-8.
Beni G, Hackwood S. Electro‐wetting displays. Applied Physics Letters. 1981 Feb 15;38(4):207-9.
Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems. 2000 Jun;9(2):171-80.
Whitesides GM. The origins and the future of microfluidics. nature. 2006 Jul 27;442(7101):368-73.
Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Reviews of modern physics. 2005 Oct 6;77(3):977.
Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nature reviews Drug discovery. 2006 Mar 1;5(3):210-8.
Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM. Subcellular positioning of small molecules. Nature. 2001 Jun 28;411(6841):1016-.
Son J, Samuel R, Gale BK, Carrell DT, Hotaling JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017 Sep 1;11(5).
Jafek AR, Harbertson S, Brady H, Samuel R, Gale BK. Instrumentation for xPCR Incorporating qPCR and HRMA. Analytical chemistry. 2018 May 21;90(12):7190-6.
Bange A, Halsall HB, Heineman WR. Microfluidic immunosensor systems. Biosensors and Bioelectronics. 2005 Jun 15;20(12):2488-503.
Safdar M, Jänis J, Sanchez S. Microfluidic fuel cells for energy generation. Lab on a Chip. 2016;16(15):2754-8.
Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab on a Chip. 2012;12(12):2146-55.
Xia Y, Whitesides GM. Soft lithography. Annual review of materials science. 1998 Aug;28(1):153-84.
McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM. Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal. 2000 Jan 1;21(1):27-40.
Kim P, Kwon KW, Park MC, Lee SH, Kim SM, Suh KY. Soft lithography for microfluidics: a review. Biochip J. 2008 Mar 20;2(1):1-1.
Qin D, Xia Y, Whitesides GM. Soft lithography for micro-and nanoscale patterning. Nature protocols. 2010 Mar;5(3):491.
Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics. 2016 Jul 26;49(11):2280-92.
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics. 2016 Mar 15;77:774-89.
Walsh DI, Kong DS, Murthy SK, Carr PA. Enabling microfluidics: from clean rooms to makerspaces. Trends in biotechnology. 2017 May 1;35(5):383-92.
https://www.elveflow.com/microfluidic-reviews/general-microfluidics/history-of-microfluidics/)
Victor A, Ribeiro JE, Araújo FF. Study of PDMS characterization and its applications in biomedicine: A review. Journal of Mechanical Engineering and Biomechanics. 2019;4(1):1-9.
Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y, Mathies RA, Yang CJ. PMMA/PDMS valves and pumps for disposable microfluidics. Lab on a Chip. 2009;9(21):3088-94.
Chen Y, Zhang L, Chen G. Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips. Electrophoresis. 2008 May;29(9):1801-14.
Rogers CI, Pagaduan JV, Nordin GP, Woolley AT. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Analytical chemistry. 2011 Aug 15;83(16):6418-25.
Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chemical reviews. 2013 Apr 10;113(4):2550-83.
Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Accounts of chemical research. 2013 Nov 19;46(11):2396-406.
Chen CS, Breslauer DN, Luna JI, Grimes A, Chin WC, Lee LP, Khine M. Shrinky-Dink microfluidics: 3D polystyrene chips. Lab on a Chip. 2008;8(4):622-4.
Ogończyk D, Węgrzyn J, Jankowski P, Dąbrowski B, Garstecki P. Bonding of microfluidic devices fabricated in polycarbonate. Lab on a Chip. 2010 May 5;10(10):1324-7.
Piccin E, Coltro WK, da Silva JA, Neto SC, Mazo LH, Carrilho E. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping. Journal of Chromatography A. 2007 Nov 30;1173(1-2):151-8.
Cheng S, Wu Z. Microfluidic electronics. Lab on a Chip. 2012;12(16):2782-91.
Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chemical reviews. 2013 Apr 10;113(4):2550-83.
Cheng S, Wu Z. Microfluidic electronics. Lab on a Chip. 2012;12(16):2782-91.
Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chemical reviews. 2013 Apr 10;113(4):2550-83.
Cheng S, Wu Z. Microfluidic stretchable RF electronics. Lab on a Chip. 2010;10(23):3227-34.
Radenovic, http://tutorial6.com/m/microfluidics-lab-onchip-e4141 [Electronic resource].
Khaskhoussi A, Calabrese L, Patané S, Proverbio E. Effect of chemical surface texturing on the superhydrophobic behavior of micro–nano-roughened AA6082 surfaces. Materials. 2021 Nov 24;14(23):7161.
http://www.kirbyresearch.com/index.cfm/page/ri/ufluids.html [Electronic resource].
Nam-Trung N. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid. 2012;12:1-6.
Khaskhoussi A, Calabrese L, Patané S, Proverbio E. Effect of chemical surface texturing on the superhydrophobic behavior of micro–nano-roughened AA6082 surfaces. Materials. 2021 Nov 24;14(23):7161.
Berg HC. Random walks in biology. Princeton University Press; 1993 Sep 27.
Hatch A, Garcia E, Yager P. Diffusion-based analysis of molecular interactions in microfluidic devices. Proceedings of the IEEE. 2004 Jan;92(1):126-39.
Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of computational physics. 1992 Jun 1;100(2):335-54.
Vowell S. Microfluidics Effects of Surface Tension. Recovered from. 2009 Mar 19.
Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics. 2012 Mar 1;6(1).
Convery N, Gadegaard N. 30 years of microfluidics. Micro and Nano Engineering. 2019 Mar 1;2:76-91.
Tang T, Yuan Y, Yalikun Y, Hosokawa Y, Li M, Tanaka Y. Glass based micro total analysis systems: Materials, fabrication methods, and applications. Sensors and Actuators B: Chemical. 2021 Jul 15;339:129859.
Mekonen AA, Abebe SA, Adali T. Microfluidics devices manufacturing and biomedical applications. J Biosens Bioelectron. 2019;10(265):2.
Sinha H, Quach AB, Vo PQ, Shih SC. An automated microfluidic gene-editing platform for deciphering cancer genes. Lab on a Chip. 2018;18(15):2300-12.
Golvari P, Kuebler SM. Fabrication of functional microdevices in SU-8 by multi-photon lithography. Micromachines. 2021 Apr 21;12(5):472.
Fenech M, Girod V, Claveria V, Meance S, Abkarian M, Charlot B. Microfluidic blood vasculature replicas using backside lithography. Lab on a Chip. 2019;19(12):2096-106.
Kasi DG, de Graaf MN, Motreuil-Ragot PA, Frimat JP, Ferrari MD, Sarro PM, Mastrangeli M, van den Maagdenberg AM, Mummery CL, Orlova VV. Rapid prototyping of organ-on-a-chip devices using maskless photolithography. Micromachines. 2021 Dec 29;13(1):49.
Hassanin H, Essa K, Elshaer A, Imbaby M, El-Mongy HH, El-Sayed TA. Micro-fabrication of ceramics: Additive manufacturing and conventional technologies. Journal of advanced ceramics. 2021 Feb;10:1-27.
Hassanpour-Tamrin S, Sanati-Nezhad A, Sen A. A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Scientific Reports. 2021 Mar 1;11(1):4821.
Gleichweit E, Baumgartner C, Diethardt R, Murer A, Sallegger W, Werkl D, Köstler S. UV/Ozone surface treatment for bonding of elastomeric COC-based microfluidic devices. InProceedings 2018 Dec 11 (Vol. 2, No. 13, p. 943). MDPI.
Liu G. Grand challenges in biosensors and biomolecular electronics. Frontiers in Bioengineering and Biotechnology. 2021 Aug 6;9:707615.
Li M, Law MK, Mak PI, Martins RP. Ultra-low-frequency induced tiny droplet transportation with small droplet-to-electrode area ratio in digital microfluidic platforms.
Kim KS, Park SJ. Effect of silver doped MWCNTs on the electrical properties of conductive MWCNTs/PMMA thin films. Synthetic metals. 2010 Jan 1;160(1-2):123-6.
Staudinger U, Thoma P, Lüttich F, Janke A, Kobsch O, Gordan OD, Pötschke P, Voit B, Zahn DR. Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating. Composites Science and Technology. 2017 Jan 18;138:134-43.
Arango Y, Temiz Y, Gökçe O, Delamarche E. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics. Science advances. 2020 Apr 17;6(16):eaay8305.
Zhang X, Xia K, Ji A. A portable plug-and-play syringe pump using passive valves for microfluidic applications. Sensors and Actuators B: Chemical. 2020 Feb 1;304:127331.
Dellaquila A. Five short stories on the history of microfluidics. Everflow, https://www. elveflow. com/microfluidic-reviews/general-microfluidics/history-ofmicrofluidics. 2017.
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SE, Boisen A, Brolo AG, Choo J. Present and future of surface-enhanced Raman scattering. ACS nano. 2019 Sep 3;14(1):28-117.
Whitesides GM. The origins and the future of microfluidics. nature. 2006 Jul 27;442(7101):368-73.
Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip. 2012;12(12):2118-34.
Frenz L, Blank K, Brouzes E, Griffiths AD. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab on a Chip. 2009;9(10):1344-8.
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical chemistry. 2015 Jan 6;87(1):230-49.
Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices.
Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH. Deterministic hydrodynamics: Taking blood apart. Proceedings of the National Academy of Sciences. 2006 Oct 3;103(40):14779-84.
Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002 Oct 18;298(5593):580-4.
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010 Jun 25;328(5986):1662-8.