Nanotechnology-based Strategies for Ocular Drug Delivery Systems

DOI:

https://doi.org/10.37285/ijpsn.2018.11.3.1

Authors

  • Manju Misra
  • Aashu Gupta
  • Kritika Nayak

Abstract

This review describes current nanotechnology-based delivery systems for ocular targeting. Amongst all the drug delivery systems existing today, ocular drug delivery is one such delivery approach which is having great endeavours due to the challenges faced by it. Many new as well as exciting treatment options have emerged in this field. The major cause behind development of new treatment alternatives in this field are the limitations raised by the conventional approaches. Currently, researchers are working on development of novel nano techniques to overcome these challenges. The major hurdle is associated with the complicated anatomy and physiology of eye having various static (cornea, conjunctiva, retinal pigmental epithelium) as well as dynamic barriers (blood aqueous barrier, blood retinal barrier) which reduce the overall bioavailability of the drugs. These membranous and fluidic barriers make drug delivery to eye a very challenging task. Hence, current research focuses on developing a system, which is least invasive and able to surpass ocular barriers to maintain sufficient drug levels within the ocular tissue. Nanotechnology based delivery systems play a vital role in this. Many vesicular as well as particulate systems are attempted for the same for anterior as well as posterior segment targeting which can easily overcome limitations of conventional drug delivery systems. Current momentum and ongoing research in this field holds a significant level of promise towards development of improved therapies for treating vision related ailments.  

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Nanotechnology, Ocular drug delivery systems, Retinal barrier, Ophthalmic

Downloads

Published

2019-05-31

How to Cite

1.
Misra M, Gupta A, Nayak K. Nanotechnology-based Strategies for Ocular Drug Delivery Systems. Scopus Indexed [Internet]. 2019 May 31 [cited 2024 Nov. 19];11(3):4073-88. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/366

Issue

Section

Review Articles

References

Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, and Pashaei-Asl R (2014). Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1): 247-257.
Abdullah TA, Ibrahim NJ, and Warsi MH (2016). Chondroitin sulfate ­ chitosan nanoparticles for ocular delivery of bromfenac sodium: Improved permeation, retention, and penetration. Int J Pharm Investig 6(2): 1-9.
Achouri D, Alhanout K, Piccerelle P, and Andrieu V (2013). Recent advances in ocular drug delivery. Drug Dev Ind Pharm 39(11): 1599-1617.
Adibkia K, Omidi Y, Siahi MR, Javadzadeh ALIR, Barzegar-jalali M, and Barar J (2007a). Inhibition of Endotoxin-Induced Uveitis by Methylprednisolone Acetate Nanosuspension in Rabbits. J Ocul Pharmacol Ther 23(5): 421-432.
Adibkia K, Siahi Shadbad MR, Nokhodchi A, Javadzedeh A, Barzegar-Jalali M, Barar J, Mohammadi G, and Omidi Y (2007b). Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target 15(6): 407-416.
Agarwal R, Iezhitsa I, Agarwal P, Alimah N, Nasir A, Razali N, Alyautdin R, and Ismail NM (2016). Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 23(4): 1075-1091.
Agnihotri SM and Vavia PR (2009). Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine: Nanotechnology Biol Med 5(1): 90-95.
Ahmed EM (2013). Hydrogel: Preparation, characterization and applications. J Adv Res 6(2): 105-121.
Ahuja M, Dhake AS, Sharma SK, and Majumdar DK (2011). Diclofenac-loaded Eudragit S100 nanosuspension for ophthalmic delivery. J Microencapsul 28(1): 37-45.
Ahuja M, Verma P, and Bhatia M (2015). Preparation and evaluation of chitosan-itraconazole co-precipitated nanosuspension for ocular delivery. J Exp Nanosci 10(3): 209-221.
Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, and Ünlü N (2011). Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J Control Release 151(3): 286-294.
Ali HSM, York P, Ali AMA, and Blagden N (2011). Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 149(2): 175-181.
Alvarado HL, Abrego G, Garduño-Ramirez ML, Clares B, Calpena AC, and García ML (2015). Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine: Nanotechnology Biol Med 11(3): 521-530.
Ammar HO, Salama HA, Ghorab M, and Mahmoud AA (2009). Nanoemulsion as a Potential Ophthalmic Delivery System for Dorzolamide Hydrochloride. AAPS Pharm Sci Tech 10(3): 808-819.

Araújo J, Nikolic S, Egea MA, Souto EB, and Garcia ML (2011). Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surfaces B Biointerfaces 88(1): 150-157.
Asasutjarit R, Theerachayanan T, Kewsuwan P, Veeranodha S, Fuongfuchat A, and Ritthidej GC (2015). Development and Evaluation of Diclofenac Sodium Loaded-N-Trimethyl Chitosan Nanoparticles for Ophthalmic Use. AAPS Pharm Sci Tech 16(5): 1013-1024.
Asasutjarit R, Theerachayanan T, Kewsuwan P, Veeranondha S, Fuongfuchat A, and Ritthidej GC (2017). Gamma sterilization of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. Carbohydr Polym 157: 603-612.
Attama AA, Reichl S, and Christel CM (2008). Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. International J Pharm 355(1): 307-313.
Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, and El Dally M (2008). Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31(4): 1040-1049.
Basaran E, Demirel M, Sirmagul B, and Yazan Y (2010). Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1): 37-47.
Bayoudh W, Frentz M, Carstesen D, Dittrich B, Reismann C, Schrage NF, Walter P, and Weinberger AWA (2016). Intraocular silicone implant to treat chronic ocular hypotony-preliminary feasibility data. Graefe’s Arch Clin Exp Ophthalmol 254(11): 2131–2139.
Bin Choy, Park JH, and Prausnitz MR (2008). Mucoadhesive Microparticles Engineered for Ophthalmic Drug Delivery. J Phys Chem Solids 69(5): 1533-1536.
Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, and Behar-Cohen F (2006). Intraocular implants for extended drug delivery: Therapeutic applications. Adv Drug Deliv Rev 58(11): 1182-1202.
Chaiyasan W, Srinivas SP, and Tiyaboonchai W (2015). Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21: 1224-1234.
Chan J, Craig JP, and Alany RG (2007). Phase transition water-in-oil microemulsions as ocular drug delivery systems: In vitro and in vivo evaluation. Internatinal J Pharm 328(1): 65-71.
Chen M, Hou P, Tai T, and Lin BJ (2008). Blood-Ocular Barriers. Tzu Chi Med J 20(1): 26-34.
Cholkar K, Gilger BC, and Mitra AK (2015). Topical, Aqueous, Clear Cyclosporine Formulation Design for Anterior and Posterior Ocular Delivery. Transl Vis Sci Technol 4(3): 1-16.
Cholkar K, Gunda S, Earla R, Pal D, and Mitra AK (2014). Nanomicellar Topical Aqueous Drop Formulation of Rapamycin for Back-of-the-Eye Delivery. AAPS Pharm Sci Tech 16(3): 610-622.
Chowdhury S, Guha R, Trivedi R, Kompella UB, Konar A, and Hazra S (2013). Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS One 8(8): 1-10.
Christoforidis JB, Chang S, Jiang A, Wang J, and Cebulla CM (2012). Intravitreal Devices for the Treatment of Vitreous Inflammation. Mediators Inflamm 2-8.
Civiale C, Licciardi M, Cavallaro G, Giammona G, and Mazzone MG (2009). Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378(1): 177-186.
Concheiro A, Alvarez-rivera F, Fern D, and Alvarez-lorenzo C (2016). a-Lipoic Acid in Soluplus® Polymeric Nanomicelles for Ocular Treatment of Diabetes-Associated Corneal Diseases. J Pharm Sci 105(9): 2855-2863.
Dai W, Zhang D, Duan C, Jia L, Wang Y, Feng F, and Zhang Q (2010). Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system. J Microencapsul 27(3): 234-241.
Dandagi P, Kerur S, Mastiholimath V, Gadad A, and Kulkarni A (2009). Polymeric ocular nanosuspension for controlled release of acyclovir: In vitro release and ocular distribution. Iran J Pharm Res 8(2): 79-86.
Das S and Suresh PK (2011). Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine Nanotechnology Biol Med 7(2): 242-247.
Daull P, Lallemand F, and Garrigue JS (2014). Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol 66(4): 531-541.
De TK and Hoffman AS (2001). A reverse microemulsion polymerization method for preparation of bioadhesive polyacrylic acid nanoparticles for mucosal drug delivery: Loading and release of timolol maleate. Artif cells, blood Subst Immobil Biotechnol 29(1): 31-46.
Derwent et al (2008). Thermoresponsive Hydrogels as a New Ocular Drug Delivery Platform to the Posterior Segment of the Eye. Trans Am Ophthalmol Soc 106: 206-214.
El-Feky GS, Zayed G, and Farrag ARH (2013). Optimization of an ocular nanosuspension formulation for acyclovir using factorial design. Int J Pharm Pharm Sci 5: 213-219.
Elnahas HM (2013). Liposomal gel as ocular delivery system for diclofenac sodium: In-vitro and In-vivo studies. Int J Pharm Sci Res 4(1): 215-224.
Fathi M, Barar J, Aghanejad A, and Omidi Y (2015). Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 5(4): 159–164.
Fetihg G (2016). Fluconazole loaded niosomal gel as topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol 35: 8-15.
Fruchon S, Caminade AM, Abadie C, Davignon JL, Combette JM, Turrin CO, and Poupot R (2013). An azabisphosphonate-capped poly(phosphorhydrazone) dendrimer for the treatment of endotoxin-induced uveitis. Molecules 18(8): 9305-9316.
Fujisawa T, Miyai H, Hironaka K, Tsukamoto T, Tahara K, Tozuka Y, Ito M, and Takeuchi H (2012). Liposomal diclofenac eye drop formulations targeting the retina: Formulation stability improvement using surface modification of liposomes. Int J Pharm 436(1): 564-567.
Gaafar PME, Abdallah OY, Farid RM, and Abdelkader H (2014). Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res 24(3): 204-215.
Gallarate M, Chirio D, Bussano R, Peira E, Battaglia L, Baratta F, and Trotta M (2013). Development of O/W nanoemulsions for ophthalmic administration of timolol. Internatinal Journal of Pharmaceutics. 440(2): 126-134.
Gandhi A, Paul A, Sen SO, and Sen KK (2014). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and Biomedical applications. Asian J Pharm Sci 10(2): 99-107.
Gao S, Maeda T, Okano K, and Palczewski K (2012). A Microparticle/ Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids. Invest Ophthalmol Vis Sci 53(10): 6314-6323.
Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, and Caramella C (2008). Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 364(1): 76-86.
Gökçe EH, Sandri G, Sait E, Bonferoni MC, Güneri T, and Caramella C (2009). Cyclosporine A-Loaded Solid Lipid Nanoparticles : Ocular Tolerance and In Vivo Drug Release in Rabbit Eyes. Int J Pharm 34(1): 996-1003.
Gonzalez-Mira E, Egea MA, Garcia ML, and Souto EB (2010). Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surfaces B Biointerfaces 81(2): 412-421.
Gonzalez-Mira E, Nikolić S, Calpena AC, Egea MA, Souto EB, and García ML (2012). Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J Pharm Sci 101(2): 707-725.
Gulsen D and Chauhan A (2004). Ophthalmic Drug Delivery through Contact Lenses. Invest Ophthalmol Vis Sci 45(7): 2342-2347.
Gupta AK, Madan S, Majumdar DK, and Maitra A (2000). Ketorolac entrapped in polymeric micelles: Preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm 209(1): 1-14.
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, and Mittal G (2010). Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine Nanotechnology Biol Med 6(3): 324-333.
Habib F and Maher S (2012). Microemulsion for ocular delivery: ocular irritancy test and in vivo studies of anti-inflammatory action. J Drug Deliv Sci Technol 22(6): 541-544.
Habib FS, Fouad EA, and Fathalla D (2008). Liposomes as an ocular delivery system of fluconazole: In-vitro studies. Bull Pharm Sci 31(2): 293-311.
Haghjou N, Soheilian M, and Abdekhodaie MJ (2011). Sustained Release Intraocular Drug Delivery Devices for Treatment of Uveitis. J Ophthalmic Vis Res 6(4): 317-329.
He Z, Wang Z, Zhang H, Pan X, Su W, Liang D and Wu C (2011). Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery. Acta Pharm. Sin. B 1(4): 254-260.
Hegde RR, Verma A, and Ghosh A (2013). Microemulsion: New Insights into the Ocular Drug Delivery. ISRN Pharm 2013: 1-11.
Hennig R, Veser A, Kirchhof S, and Goepferich A (2015). Branched Polymer-Drug Conjugates for Multivalent Blockade of Angiotensin II Receptors. Mol Pharm 12(9): 3292-3302.
Higuchi T, Hussain AA, and Shell JW (1976). Bioerodible ocular device. US Patent 3960.
Hippalgaonkar K, Adelli GR, Repka MA, and Majumdar S (2013). Indomethacin-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Development, Characterization, and In Vitro Evaluation. J Ocul Pharmacol Ther 29(2): 216-228.
Hiratani H, Fujiwara A, Tamiya Y, and Mizutani Y (2005). Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26: 1293-1298.
Hironaka K, Inokuchi Y, Tozuka Y, and Shimazawa M (2009). Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136(3): 247-253.
Hosny KM (2010). Ciprofloxacin as Ocular Liposomal Hydrogel. AAPS Pharm Sci Tech 11(1): 241-246.
Hosseini SH, Maleki A, Eshraghi HR, and Hamidi M (2016). Preparation and in vitro/pharmacokinetic/pharmacodynamic evaluation of a slow-release nano-liposomal form of prednisolone. Drug Deliv 23(8): 1-9.
Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, and Prausnitz MR (2017). Coated Microneedles for Drug Delivery to the Eye. Invest Ophthalmol Vis Sc 48(9): 4038-4043.
Jwala J, Boddu SHS, Shah S, Sirimulla S, Pal D, and Mitra AK (2011). Ocular Sustained Release Nanoparticles Containing Stereoisomeric Dipeptide Prodrugs of Acyclovir. J Ocul Pharmacol Ther 27(2): 163-172.
Kakkar S and Kaur IP (2011). Spanlastics-A novel nanovesicular carrier system for ocular delivery. Int J Pharm 413(1): 202-210.
Kalam MA (2016). The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int J Biol Macromol 89: 559-568.
Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, and Sultana Y (2014). Delivery of gatifloxacin using microemulsion as vehicle : formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv 23: 896-907.
Kalomiraki M, Thermos K, and Chaniotakis NA (2016). Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 11: 1-12.
Kassem MA, Rahman A, Ghorab MM, Ahmed MB, and Khalil RM (2007). Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Internatinal J Pharm 340: 126-133.
Kaur IP and Kanwar M (2002). Ocular Preparations: The Formulation Approach. Drug Dev Ind Pharm 28(5): 473-493.
Kaur IP, Rana C, Singh M, Bhushan S, Singh H, and Kakkar S (2012). Development and Evaluation of Novel Surfactant-Based Elastic Vesicular System for Ocular Delivery of Fluconazole. J Ocul Pharmacol Ther 28(5): 484-496.
Khandan O, Kahook MY, and Rao MP (2015). Fenestrated microneedles for ocular drug delivery. Sensors Actuators B Chem 223: 3-21.
Khokhar P (2015). Design and Characterisation of Chloramphenicol Ocular Insert for Ocular Drug. Int J Pharma Res Rev 4(2): 9-15.
Kompella UB, Kadam RS, and Lee VHL (2010). Recent advances in ophthalmic drug delivery. Ther Deliv 1(3): 435-456.
Kothuri M, Pinnamaneni S, Das N, and Das S (2003). Microparticles and Nanoparticles in Ocular Drug Delivery. Ophthalmic Drug Delivery Systems. Marcel-Dekker, New York. p. 437-66.
Kumar R and Sinha VR (2016). Lipid Nanocarrier: an Efficient Approach towards Ocular Delivery of Hydrophilic Drug (Valacyclovir). AAPS Pharm Sci Tech 18(3): 884-894.
Kumar R and Sinha VR (2014). Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surfaces B Biointerfaces 117: 82-88.
Kumari A, Sharma PK, Garg VK, and Garg G (2010). Ocular inserts-Advancement in therapy of eye diseases. J Adv Pharm Technol Res 1(3): 291-296.
L Alvarado H, Abrego G, Garduno-Ramirez ML, Clares B, Calpena AL, García M, and Alvarado H, (2015). Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine: nanotechnology biology and medicine. 11(3): 521-530.
Lajunen T, Nurmi R, Kontturi L.-S, Viitala L, Yliperttula M, Murtomäki L, and Urtti A (2016). Light activated liposomes: Functionality and prospects in ocular drug delivery. J Control Release 244: 157-166.
Lallemand F, Daull P, Benita S, Buggage R, and Garrigue J.-S (2012). Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv: 1-16.
Lallemand F, Schmitt M, Bourges JL, Gurny R, Benita S, and Garrigue JS (2017). Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm 117: 14-28.
Lawrence MJ and Rees GD (2000). Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45: 89-121.
Lee D, Cho S, Park HS, and Kwon I (2016). Ocular Drug Delivery through pHEMA-Hydrogel Contact Lenses Co-Loaded with Lipophilic Vitamins. Nat Publ Gr: 1-8.
Lee DJ (2015). Intraocular Implants for the Treatment of Autoimmune Uveitis. J Funct Biomater 6(3): 650-666.
Lidich N, Aserin A, and Garti N (2016). Journal of Colloid and Interface Science Structural characteristics of oil-poor dilutable fish oil omega-3 microemulsions for ophthalmic applications. J Colloid Interface Sci 463: 83-92.
Liu C, Lai K, Wu W, Chen Y, and Lee W (2015). In Vitro Scleral Lutein Distribution by Cyclodextrin Containing Nanoemulsions. Chem Pharm Bull 63(2): 59-67.
Liu RU, Liu Z, Zhang C, and Zhang B (2012). Nanostructured Lipid Carriers as Novel Ophthalmic Delivery System for Mangiferin: Improving In Vivo Ocular Bioavailability. J Pharm Sci 101(10): 3833-3844.
Liu Z, Li J, Nie S, Liu H, Ding P, and Pan W (2006). Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315(1): 12-17.
Loftsson T, Hreinsdóttir D, and Stefánsson E (2007a). Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol 59(1): 629-635.
Loftsson T, Sigurdsson HH, Hreinsdóttir D, Konrádsdóttir F, and Stefánsson E (2007b). Dexamethasone delivery to posterior segment of the eye. J Incl Phenom Macrocycl Chem 57(1): 585-589.
Loftsson T and Stefansson E (2007). Cyclodextrins in ocular drug delivery: Theoretical basis with dexamethasone as a sample drug. J Drug Deliv Sci Technol 17(1): 3-9.
Luo Q, Zhao J, Zhang X, and Pan W (2011). Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm 403(1): 185–191.
Madhuri Band Mahesh B (2012). Ocular Inserts: A Rate Controlled Drug Delivery System - A Review. Int J Pharm Erud 2(1): 49-63.
Makadia HK and Siegel SJ (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 3: 1377-1397.
Mandal A, Bisht R, Rupenthal ID, and Mitra AK (2017). Polymeric micelles for ocular drug delivery: From structural frameworks to recent prelinical studies. J Control Release 248: 2-60.
Manickavasagam D and Oyewumi MO (2013). Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management. J Drug Deliv: 1-12.
Maulvi FA, Soni TG, Shah DO, Maulvi FA, Soni TG, and Shah DO (2016). A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv 23(8): 3017-3026.
Mishra GP, Bagui M, Tamboli V, and Mitra AK (2011). Recent Applications of Liposomes in Ophthalmic Drug Delivery. J Drug Deliv 2011: 1-14.
Mondon K, Zeisser-Laboube M, Gurny R, and Möller M (2011). Novel Cyclosporin A formulations using MPEG-hexyl-substituted polylactide micelles: A suitability study. Eur. J Pharm Biopharm 77: 56-65.
Moraru et al (2014). Intraocular biodistribution of intravitreal injected chitosan/gelatin nanoparticles. Rom J Morphol Embryol 55(3): 869-875.
Nagalakshmi S, Damodharan N, Thanka J, and Seethalakshmi S (2015). Niosomes in Ocular Drug Delivery System: A Review of Magic Targeted Drug Delivery. Int J Pharm Sci Rev Res 32(9): 61-66.
Nasra FH, Khoee S, and Mehdi M (2015). Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-based Nanoparticles, for Ocular Drug Delivery Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-based Nanoparticles for Ocular Drug Delivery. Biomacro-molecules 17(2): 485-495.
Patel A, Cholkar K, Agrahari V, and Mitra AK (2013). Ocular drug delivery systems: An overview. World J Pharmacol 2(2): 47-64.
Patel D, Dasgupta S, Dey S, Ramani YR, Ray S, and Mazumder B (2012). Nanostructured Lipid Carriers (NLC)-Based Gel for the Topical Delivery of Aceclofenac: Preparation, Characterization, and In Vivo Evaluation. Sci Pharm 80(3): 749-64.
Patel SR, Edelhauser HF, and Prausnitz MR (2011). Targeted Drug Delivery to the Eye Enabled by Microneedles. In Drug Product Development for the Back of the Eye (Kompella UB and Edelhauser HF eds), Springer US, Boston, MA: 331-360.
Peng CC and Chauhan A (2011). Extended cyclosporine delivery by silicone-hydrogel contact lenses. J Control Release 154(3): 267-274.
Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, and Puglisi G (2002). Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16(1): 53-61.
Pignatello R, Bucolo C, Spedalieri G, Maltese A, and Puglisi G (2002). Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23(15): 3247-3255.
Pollack et al (1976). The Ocusert pilocarpine system: advantages and disadvantages. Southern Medical Journal 69: 1296-1298.
Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M, and Davaran S (2010). In Vivo Evaluation of Novel Nanoparticles Containing Dexamethasone for Ocular Drug Delivery on Rabbit Eye. Curr Eye Res 35(2): 1081-1089.
Rajendran NN, Natrajan R, R SK, and Selvaraj S (2010). Acyclovir-loaded chitosan nanoparticles for ocular delivery. Asian J Pharm 4: 220-226.
Ranta VP and Urtti A (2006). Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Advanced drug delivery reviews 58(11): 1164-1181.
Rathore KS, and Nema RK (2009). Review on Ocular Inserts. Int J PharmTech Res 1(2): 164-169.
Rodrigues G, Fialho SL, Siqueira RC, Jorge R, and Cunha S (2010). Implants as drug delivery devices for the treatment of eye diseases. Brazilian J Pharm Sci 46(3): 586-595.
Sabzevari A, Adibkia K, Hashemi H, Hedayatfar A, Mohsenzadeh N, Atyabi F, Ghahremani MH, and Dinarvand R (2013). Polymeric triamcinolone acetonide nanoparticles as a new alternative in the treatment of uveitis: in vitro and in vivo studies. Eur J Pharm Biopharm 84(1): 63-71.
Sahoo SK, Dilnawaz F, and Krishnakumar S (2008). Nanotechnology in ocular drug delivery. Drug Discov Today 13: 144-151.
Schopf LR, Popov AM, Enlow EM, Bourassa JL, Winston Z, Nowak P, and Chen H (2017). Topical Ocular Drug Delivery to the Back of the Eye by Mucus-Penetrating Particles. Transl Vis Sci Technol 4(3): 1-12.
Shen J, Deng Y, Jin X, Ping Q, Su Z, and Li L (2010). Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A : Improving in vivo ocular distribution. Int J Pharm 402(1): 248-253.
Shen Y and Tu J (2007). Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 9(3): 71-77.
Shukr M (2014). Formulation, in vitro and in vivo evaluation of lidocaine HCl ocular inserts for topical ocular anesthesia. Arch Pharm Res 37: 882-889.
Stubenrauch C (2009). Microemulsions, Background, New concepts, Applications, Perspectives, 1st ed. Blackwell publishing ltd.
Swaminathan S, Vavia PR, Trotta F, and Cavalli R (2013). Nanosponges Encapsulating Dexamethasone for Ocular Delivery: Formulation Design. J Biomed Nanotechnol 9: 998-1007.
Taha EI, El-Anazi MH, El-Bagory IM, and Bayomi MA (2014). Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22(3): 231-239.
Tayel SA, El-Nabarawi MA, Tadros MI, and Abd-Elsalam WH (2013). Positively Charged Polymeric Nanoparticle Reservoirs of Terbinafine Hydrochloride: Preclinical Implications for Controlled Drug Delivery in the Aqueous Humor of Rabbits. AAPS Pharm Sci Tech 14(2): 782-793.
Tej K, Moin A, Gowda D V, Karunakar G, Patel NP, and Kamal SS (2016). Nano structured lipid carrier based drug delivery system. J Chem Pharm Res 8(2): 627-643.
Tieppo A, White CJ, Paine AC, Voyles ML, Mcbride MK, and Byrne ME (2012). Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157(3): 391-397.
Toutounchian JJ, He H, Pagadala J, Miller DD, Steinle JJ, Wilson MW, and Yates CR (2000). EDL2000 Pharmacokinetics following Ocular Nanoemulsion Administration.
Tsukamoto T, Hironaka K, Fujisawa T, and Yamaguchi D (2013). Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Asian J Pharm Sci 8(2): 104-109.
Vadlapudi AD and Mitra AK (2015). Nanomicelles: An emerging platform for drug delivery to the eye. HHS Public Access 4(2): 1-3.
Vaishya RD (2015). Controlled Ocular Drug Delivery with Nanomicelles. NIH Public Access 6(5): 422-437.
Vandamme TF (2002). Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res 21(1): 15-34.
Vandamme TF and Brobeck L (2005). Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102: 23-38.
Varshochian R, Jeddi-Tehrani M, Mahmoudi AR, Khoshayand MR, Atyabi F, Sabzevari A, Esfahani MR, and Dinarvand R (2013). The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci 50(7): 341-52.
Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, and Haro I (2015). Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomedicine 10: 609-31.
Vega E, Egea MA, Valls O, and Garcia ML (2006). Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 95: 2393-2405.
Wang J, Jiang A, Joshi M, and Christoforidis J (2013). Drug Delivery Implants in the Treatment of Vitreous Inflammation. Mediators Inflamm. 1-8.
Yang H and Leffler CT (2013). Hybrid Dendrimer Hydrogel/ Poly(Lactic-Co-Glycolic Acid) Nanoparticle Platform: An Advanced Vehicle for Topical Delivery of Antiglaucoma Drugs and a Likely Solution to Improving Compliance and Adherence in Glaucoma Management. J Ocul Pharmacol Ther 29(2): 166-172.
Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, Liang R, and Wang A (2010). Preparation and characterization of puerarin–dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm 36(9): 1027-1035.
Yasukawa T, Ogura Y, Kimura H, and Sakurai E (2006). Drug delivery from ocular implants. Expert Opin Drug Deliv 3(2): 261-273.
Yu Y, Lau LCM, Lo AC, and Chau Y (2015). Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous: A 6-Month In Vivo Study. Transl Vis Sci Technol 4(2): 1-5.
Zafar A, Ahmad J, and Addo RT (2016). Ocular Drug Delivery: Advances, Challenges and Applications. In Ocular Drug Delivery: Advances, Challenges and Applications (Addo and Richard T eds), Springer International Publishing, pp. 131-163.
Zhang L, Li Y, Zhang C, Wang Y, and Song C (2009). Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 4: 175-183.