Evaluation of Anticancer Activity and Structural Analysis of Biosynthesized Silver Nanoparticles (AgNPs) from Centella Asiatica

DOI:

https://doi.org/10.37285/ijpsn.2024.17.2.7

Authors

  • RUPA R Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore
  • PAVITHRA B Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore
  • KAVYA M Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore
  • NIKHITHA K V Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore
  • NIVETHA J D Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore
  • Bindhu J Department of Biotechnology, Sri Shakthi Institute of Engineering & Technology, Coimbatore

Abstract

Introduction: The synthesis of silver nanoparticles (AgNPs) from an ethanolic extract of Centella asiatica leaf, which exhibits anticancer characteristics, was investigated in this study. Green synthesis, a non-harmful procedure for the environment, aids in the production of nanoparticles from Centella asiatica extract. Centella asiatica has long been regarded to have beneficial properties for neurological function, anti-inflammation, and wound treatment.

Objective: FT-IR, GC-MS, and thin-layer chromatography were used to find the phytochemicals present in the extract, and the anti-cancer abilities of the nanoparticles were tested against the PC3 cell line.

Methods: Soxhlet extraction is used to extract the bioactive, and then nanoparticles are synthesised. Following that, they are subjected to preliminary phytochemical analysis and thin-layer chromatography. These can assess the presence or absence of phytochemicals. Soon after, GCMS is done to reveal the molecular weight of the bioactive compounds using the charge-to-mass ratio. The structural peaks of different functional groups were identified using FT-IR. Under different concentrations, the silver nanoparticles were portrayed against the PC3 cell line of prostate cancer.

Result: The concentration of silver nanoparticles was shown to negatively affect cell viability. The IC50 value was 11.8 µg/ml, showing that the inhibition of growth increased with increasing doses of the AgNPs.

Conclusion: Our study highlights the significance of green synthesis of AgNPs from Centella asiatica extract, with bioactive compounds identified using GC-MS showing potential as anticancer agents against PC3 cells, suggesting a promising avenue for cancer therapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Centella asiatica, FTIR, GCMS, Cytotoxicity, PC3, Nanoparticle synthesis

Published

2024-03-31

How to Cite

1.
R R, B P, M K, K V N, J D N, J B. Evaluation of Anticancer Activity and Structural Analysis of Biosynthesized Silver Nanoparticles (AgNPs) from Centella Asiatica. Scopus Indexed [Internet]. 2024 Mar. 31 [cited 2024 Nov. 23];17(2):7256-69. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/3842

Issue

Section

Research Articles

References

Munir K, Elahi H, Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: A bibliographic review. Cancers (Basel) [Internet]. 2019;11(9):1235.

Seyfried TN, Shelton LM. Cancer is a metabolic disease. Nutr Metab (Lond) [Internet]. 2010;7(1):7.

Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health [Internet]. 2019;9(4):217–22.

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. Indian J Med Res [Internet]. 2022;156(4 & 5):598–607.

Alqahtani WS, Almufareh NA, Domiaty DM, Albasher G, Alduwish MA, Alkhalaf H, et al. Epidemiology of cancer in Saudi Arabia thru 2010-2019: a systematic review with constrained meta-analysis. AIMS Public Health [Internet]. 2020;7(3):679–96.

Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, et al. Epidemiology and prevention of prostate cancer. Eur Urol Oncol [Internet]. 2021;4(6):877–92.

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin [Internet]. 2023;73(1):17–48.

Rawla P. Epidemiology of prostate cancer. World J Oncol [Internet]. 2019;10(2):63–89.

Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett [Internet]. 2021;16(1):173.

Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol [Internet]. 2021;14(1):85.

Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol [Internet]. 2008;26(1):57–64.

Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine [Internet]. 2006;1(4):441–9.

Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, et al. Current research on silver nanoparticles: Synthesis, characterization, and applications. J Nanomater [Internet]. 2021;2021:1–23.

Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett [Internet]. 2011;311(2):131–40.

Singh SP, Mishra A, Shyanti RK, Singh RP, Acharya A. Silver nanoparticles synthesized using Carica papaya leaf extract (AgNPs-PLE) causes cell cycle arrest and apoptosis in human prostate (DU145) cancer cells. Biol Trace Elem Res [Internet]. 2021;199(4):1316–31.

Ullah I, Khalil AT, Ali M, Iqbal J, Ali W, Alarifi S, et al. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid Med Cell Longev [Internet]. 2020;2020:1215395.

Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res [Internet]. 2021;199(5):1812–22.

Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett [Internet]. 2021;19(1):355–74.

Akintelu SA, Folorunso AS. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience [Internet]. 2020;10(4):848–63.

Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P. Anticancer potential of lichens’ secondary metabolites. Biomolecules [Internet]. 2020;10(1):87.

Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Plant-Extract-Mediated synthesis of metal nanoparticles. Journal of Chemistry [Internet]. 2021 Aug 18;2021:1–14.

Diniz LRL, Calado LL, Duarte ABS, de Sousa DP. Centella asiatica and its metabolite Asiatic acid: Wound healing effects and therapeutic potential. Metabolites [Internet]. 2023;13(2).

Belwal T, Andola HC, Atanassova MS, Joshi B, Suyal R, Thakur S, et al. Gotu Kola (Centella asiatica). In: Nabavi SM, Silva AS, editors. Nonvitamin and Nonmineral Nutritional Supplements. San Diego, CA, USA: Elsevier; 2019. p. 265–75.

Biswas D, Mandal S, Chatterjee Saha S, Tudu CK, Nandy S, Batiha GE-S, et al. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother Res [Internet]. 2021;35(12):6624–54.

Park KS. Pharmacological effects of Centella asiatica on skin diseases: Evidence and possible mechanisms. Evid Based Complement Alternat Med [Internet]. 2021;2021:5462633.

Abbas M, Ahmed D, Qamar MT, Ihsan S, Noor ZI. Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresour Technol Rep [Internet]. 2021;15(100746):100746.

Hazaa M, Alm-Eldin M, Ibrahim A-E, Elbarky N, Salama M, Sayed R, et al. Biosynthesis of Silver Nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Bosid). Int J Trop Insect Sci [Internet]. 2021;41(1):145–56.

Adusei S, Otchere JK, Oteng P, Mensah RQ, Tei-Mensah E. Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon [Internet]. 2019;5(11):e02762.

Shaikh JR, Patil MK. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud [Internet]. 2020;8(2):603–8.

Puri A V. Quantitative phytochemical screening, thin-layer chromatography analysis, high-performance thin-layer chromatography fingerprinting, and antioxidant activity of leaves of Diospyros Montana (Roxb.). Asian J Pharm Clin Res [Internet]. 2019;325–31.

Haroun MA, Ahmed MM. Hide-power and combined methods for characterization of vegetable tannin in plant. GSC Adv Res Rev [Internet]. 2022;13(3):097–102.

Thalhamer B, Buchberger W. Discrepancies in the German Pharmacopoeia procedure for quality control of Quillaja saponin extracts. Arch Pharm (Weinheim) [Internet]. 2021;354(12):e2100262.

Syarifah AL, Retnowati R, Soebiantoro S, et al. Characterization of secondary metabolites profile of flavonoid from Salam leaves (Eugenia polyantha) using TLC and UVSpectrophotometry. Pharm Sci Res [Internet]. 2019;6(3).

Flieger J. ALKALOIDS | thin-layer (planar) chromatography. In: Encyclopedia of Separation Science. Elsevier; 2000. p. 1956–73.

Sánchez GL, Acevedo JCM, Soto RR. Spectrophotometric determination of diosgenin in Dioscorea composita following thin-layer chromatography. Analyst [Internet]. 1972;97(1161):973.

Jafaar HJ, Isbilen O, Volkan E, Sariyar G. Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei. BMC Res Notes [Internet]. 2021;14(1):348.

Wutsqa YU, Suratman S, Sari SLA. Detection of terpenoids and steroids in Lindsaea obtusa with thin layer chromatography. Asian J Nat Prod Biochem [Internet]. 2021;19(2).

Sonam M, Singh RP, Saklani P. Phytochemical Screening and TLC Profiling of Various Extracts of Reinwardtia indica. Int J Pharmacogn Phytochem Res [Internet]. 2017;9(4).

Sahoo MR, Umashankara MS. FTIR based metabolomics profiling and fingerprinting of some medicinal plants: An attempt to develop an approach for quality control and standardization of herbal materials. Pharmacognosy Res [Internet]. 2022;15(1):163–7.

Madubuike A.J., Igwe K. K, Otuokere I. E, Amaku F.J. Bioactivity evaluation study of phytochemicals in Gouania longipetala ethanol leaf extract using GC-MS analysis. 2016;1(5):63–71.

Charulatha S, Dharrunya HV, Dhanamurugan R, Devadharshini R, Paul D, Sinduja ME, Bindhu J. Evaluation of Antioxidant and Antimicrobial Potential of Green Synthesized Ag Nanoparticles from Ethanolic Leaf Extract of Thespesia populnea. Journal of Natural Remedies. 2022 Apr;19:137–44.

Kim H, Moon JY, Kim H, Lee D-S, Cho M, Choi H-K, et al. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem [Internet]. 2010;121(2):429–36. Available from: http://dx.doi.org/10.1016/j.foodchem.2009.12.060

Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega [Internet]. 2020;5(10):5520–8.

Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol [Internet]. 2020;31(3):1323–32.

Mogole L, Omwoyo W, Mtunzi F. Phytochemical screening, anti-oxidant activity and α-amylase inhibition study using different extracts of loquat (Eriobotrya japonica) leaves. Heliyon [Internet]. 2020;6(8):e04736.

Ahamed, Tanvir & Rahman, Sk. Mizanur & Shohael, Abdullah. Thin layer chromatographic profiling and phytochemical screening of six medicinal plants in Bangladesh. Int J Biosci [Internet]. 2017;11(1):131–40.

Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy: Guide for students of organic chemistry. London: WB Saunders; 1996.

Sharif, M. K., Ansari, F., Malik, A. H., Quyou, A., Hasan, Z. Y. M., & Khan, N. Fourier-Transform Infrared Spectroscopy, Antioxidant, Phytochemical and Antibacterial Screening of N-Hexane Extracts of Punica granatum, A Medicinal Plant. Genetics and Molecular Research. 2020;19(4).

Jain P, Soni A, Jain P, Bhawsar J. Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research. 2016;8(2):1–6.

Vijayameena C, Subhashini G, Loganayagi M, Ramesh B. Phytochemical screening and assessment of antibacterial activity for the bioactive compounds in Annona muricata. International Journal for Current Microbiology and Applied Sciences. 2013 Jan 1;2:1–8.

Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev [Internet]. 2020;13(3):223–45.

Priya RS, Geetha D, Ramesh PS. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - A comparative study. Ecotoxicol Environ Saf [Internet]. 2016;134(Pt 2):308–18.

Mikhailova EO. Silver nanoparticles: Mechanism of action and probable bio-application. J Funct Biomater [Internet]. 2020;11(4):84.

Baby MSS, Antony AV, John B, Jose DRD. Phytochemical Screening and Invitro Anti-Inflamatory Activity Of Ethanolic Extract Of Centella Asiatica. World Journal of Current Medical and Pharmaceutical Research [Internet]. 2020;02(02):181–3.

Rashid MH-O-, Akter MM, Uddin J, Islam S, Rahman M, Jahan K, et al. Antioxidant, cytotoxic, antibacterial and thrombolytic activities of Centella asiatica L.: possible role of phenolics and flavonoids. Clin Phytoscience [Internet]. 2023;9(1).

Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci [Internet]. 2021;286(120046):120046.

Budi HS, Anitasari S, Ulfa NM, Setiabudi MA, Ramasamy R, Wu C-Z, et al. Palmitic acid of Musa Paradisiaca induces apoptosis through caspase-3 in human oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci [Internet]. 2022;26(19):7099–114.

Ertürk Ö, Ayvaz MÇ, Çil E, Bağdatlı E. Gas Chromatography-Mass spectrometry analysis and antimicrobial and antioxidant activities of some orchid (Orchidaceae) species growing in Turkey. Brazilian Archives of Biology and Technology [Internet]. 2023 Jan 1;66.

Fard SE, Tafvizi F, Torbati MB. Silver nanoparticles biosynthesised using Centella asiatica leaf extract: apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnol [Internet]. 2018;12(7):994–1002.

Khatua A, Prasad A, Behuria HG, Patel AK, Singh M, Yasasve M, et al. Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs. Biomater Adv [Internet]. 2022;138(212855):212855.

Biswas BK, Beg MMA, Samadhiya A, Jamatia E, Gowda SH. Anti-proliferating effect of Ocimum sanctum and Centella asiatica plant extract on growth of human glioblastoma cells: An in vitro study. Indian Journal of Biochemistry & Biophysics [Internet]. 2022 Jan 1;