Metallic Nanoparticle Synthesis by Green Chemistry
DOI:
https://doi.org/10.37285/ijpsn.2018.11.6.2Abstract
Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles.
Downloads
Metrics
Keywords:
Metallic nanoparticles, Green synthesis, Microbial synthesis, Plant extractDownloads
Published
How to Cite
Issue
Section
References
Ahmad A, Senapati S, Khan M.I, Kumar R, Ramani R, Srinivas V, and Sastry M (2003). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Rhodococcus species. Nanotechnology. 14, 824–828.
Ahmad A, Senapati S, Khan M.I, Kumar R, and Sastry M (2005). Extra-/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol.1, 47–53
Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari H.R, and Rad H.G (2011). Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 6, 1117–1127.
Akhtar M.S, Panwar J, and Yun Y.S (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1, 591–602.
Ayoola GA (2008). "Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria". Tropical Journal of Pharmaceutical Research. 7 (3): 1019–1024.
Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W(2012). Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond). 7(8):1253-71.
Begum N. A, Mondal S, Basu S, Laskar R. A, and Mandal D (2009). Biogenic Synthesis of Au and Ag nanopartciles using aqueous solutions of Black Tea Leaf extracts Colloids Surf. B. 71, 113–118.
Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf S.M, Sanyal M, and Sastry M (2006). Extracellular biosynthesis of magnetite using fungi. Small. 2, 135–141.
Bharde A, Wani A, Shouche Y, Joy P.A, Prasad B.L.V, Sastry M and (2005). Bacterial aerobic synthesis of nanocrystalline magnetite. J. Am. Chem. Soc. 127, 9326–9327.
Bhattacharya D, and Gupta R.K. (2005) Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25, 199–204.
Castro L, Blázquez M.L, Muñoz J.A, Gonzaález F, Ballester A (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol.7, 109–116.
Chen W, Cai W, Zhang L, Wang G, and Zhang L (2001). Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Interface Sci. 238, 291–295.
Chen Z, and Gao L (2007). A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles. Mater. Res. Bull. 42, 1657–1661.
Chrysochoou M, McGuirea M, and Dahalb G (2012). Transport characteristics of green-tea nano-scale zero valent iron as a function of soil mineralogy. Chem. Eng. Trans. 28, 122–126.
Dhas N.A, Raj C.P, Gedanken A (1998). Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10, 1446–1452.
Dhillon G.G, Brar S.K, Kaur S, and Verma M (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit. Rev. Biotechnol. 32, 49–73.
Dias M.A, Lacerda I.C, Pimentel P.F, de Castro H.F. and Rosa C.A (2002). Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol., 34, 46-50.
Dwivedi A.D, Gopal K (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A. 369, 27–33.
Ershov B.G, Janata E, Michaelis M, Henglein A (1991). Reduction of aqueous copper (2+) by carbon dioxide (1−): First steps and the formation of colloidal copper. J. Phys. Chem. 95, 8996–8999.
Eustis S, Hsu H.Y, El-Sayed M.A (2005). Gold nanoparticle formation from photochemical reduction of Au3` by continuous excitation in colloidal solutions: A proposed molecular mechanism. J. Phys. Chem. B. 109, 4811–4815.
Flitsch SL, and Ulijn RV (2003). "Sugars tied to the spot". Nature. 421(6920): 219–20.
Gardea-Torresdey J.L, Gomez E, Peralta-Videa J.R, Parsons J.G, Troiani H. and Jose-Yacaman M (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361.
Glusker J, Katz A, Bock C, and Rigaku (1999). Metal ions in biological systems. The Rigaku Journal. 16(2): 8–16.
Govindaraju K Kiruthiga V, Kumar V.G, and Singaravelu G (2009). Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J. Nanosci. Nanotechnol. 9, 5497–501.
Grażyna A. Plaza, Joanna Chojniak, and Ibrahim M. Banat (2014). Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. Int. J. Mol. Sci. 15, 13720-13737.
Gruen L.C. Interaction of amino acids with silver ions (1975). Biochim. Biophys. Acta. 386: 270–274.
Haverkamp R, and Marshall A (2009). Formation and growth of Au nanoparticles inside live Alfalfa plants. J. Nanoparticle. Res. 11(6): 1453–1464.
He S, Gun Z, Zhang Y, Zhang S, Wang J, and Gu N (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61, 3984–3987.
Hosea M, Greene B, Mcpherson R, Henzl M, Alexander M.D. and Darnall D.W (1986). Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161-165.
Husseiney M.I, El-Aziz M.A, Badr Y. and Mahmoud M.A (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A, 67, 1003-1006.
Iravani S (2011). Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650.
Jakubke H, and Sewald N (2008). "Amino acids". Peptides from A to Z: A Concise Encyclopedia. Germany: Wiley-VCH. p. 20.
Jang H, Kim Y-K, Ryoo S.-R, Kim M.-H, and Min D.-H (2010). Controlling embedment and surface chemistry of nanoclustures in meta organic framework.Chem. Commun. 46, 583–585.
Kale A, Bao Y, Zhou Z, Prevelige P.E, and Gupta A (2013). Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotechnology. 24, 045603
Kasthuri J, Veerapandian S, and Rajendiran N (2009). Biological synthesis of gold and silver nanoparticles using apiin as reducing agent. Colloids Surf. B. Biointerfaces. 68: 55–60.
Kathiresan K, Manivannan S, Nabeel M.A, and Dhivya B (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B. 71, 133–137
Kaul R.K, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, and Tarafdar J.C (2012). Magnesium and iron nanoparticles production using microorganisms and various salts. Mater. Sci. Poland. 30, 254–258.
Klaus T, Joerger R, Olsson E. and Granqvist C.G (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A., 96, 13611-13614.
Korbekandi H, Iravani S, and Abbasi S (2009). Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 29, 279–306.
Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S.K. and Paknikar K.M (2002). Microbial synthesis of semiconductor Cds nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng 78, 583-588.
Kuber C, and Souza S.F (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf. B . 47, 160–164.
Kulkarni N, and Muddapur U (2014). Biosynthesis of metal nanoparticles: A review. J. Nanotechnol. 510246.
Kumar A, Kaur K, and Sharma S (2013). Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian. J. Pharm. Biol. Res. 1, 16–24.
Kumar K. M, Mandal B. K, Kumar K. S, Reddy P. S, and Sreedhar B (2013). Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 102, 128–133. doi:10.1016 /j.saa.2012.10.015.
Lee S.W, Mao C, Flynn C.E. and Belcher A.M (2002). Ordering of quantum dots, using genetically engineered viruses. Science, 296, 892-895.
Lee, J, Mahendra, S, and Alvarez, P.J.J. (2010). Nanomaterials in the Construction Industry: A review of their applications and environmental health and safety considerations. ACS Nano, 4, 3580–3590.
Leela A, and Vivekanandan M (2008). Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr. J. Biotechnol. 7, 3162–3165.
Li X, Xu H, Chen Z.S, and Chen G (2011). Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 270974.
Luangpipat T, Beattie I.R, Chisti Y, and Haverkamp R.G (2011). Gold nanoparticles produced in a microalga. J. Nanopart. Res. 13, 6439–6445.
Mahdavi M, Namvar F, Ahmad M.B, and Mohamad R (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 18, 5954–5964.
Malik P, Shankar R, Malik V, Sharma N, and Mukherjee T.K (2014). Green chemistry based benign routes for nanoparticle synthesis. J. Nanopart. 302429.
Mandal D, Bolander M.E, Mukhopadhyay D, Sarkar G, and Mukherjee P (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–492.
Mariekie G. and Anthony P (2006). Microbial production of gold nanoparticles. Gold Bull., 39, 22-28.
Marshall M, Beliaev A, Dohnalkova A, David W, Shi L. and Wang Z (2007). C-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biol., 4, 1324-1333.
Mata Y.N, Blázquez M.L, Ballester A, González F, and Muñoz J.A (2009). Gold biosorption and bioreduction with brown alga Fucus vesiculosus. J. Hazard. Mater. 166, 612–618.
McNaught, Alan D, Wilkinson, and Andrew (1997). "IUPAC Compendium of Chemical Terminology", IUPAC Compendium of Chemical Terminology (2 ed.), Oxford: Blackwell Scientific.
Mittal A.K, Chisti Y, and Banerjee U.C (2013). Synthesis of metallic nanoparticles using plants. Biotechnol. Adv., 31, 346–356.
Monaliben Shah, Derek Fawcett, Shashi Sharma, and Suraj Kumar Tripathy and Gérrard Eddy Jai Poinern (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 8, 7278–7308.
Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M.I, Kumar R, and Sastry M (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 3, 461–463.
Palaniyandi Velusamy, Govindarajan Venkat Kumar, Venkadapathi Jeyanthi, Jayabrata Das and Raman Pachaiappan (2016). Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application.Toxicol Res. 32, 1976-8257.
Panigrahi S, Kundu S, Ghosh S, Nath S, and Pal T (2004). Biosynthesis of metallic nanoparticles using plant derrivatives- an updated report. J. Nanoparticle Res. 6(4): 411–414.
Pimprikar P.S, Joshi S, Kumar A.R, Zinjarde S.S, and Kulkarni S.K (2009). Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B .74, 30–316
Pollegioni L, Servi S, eds. (2012). Unnatural Amino Acids: Methods and Protocols. Methods in Molecular Biology . 794.
Rajasulochana P, Dhamotharan R, Murugakoothan P, Murugesan S, and Krishnamoorthy P (2010). Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii. Int. J. Nanosci. 9, 511–516.
Raveendran P, Fu J, and Wallen (2003). Completely 'Green'synthesis and stabalization of metall nanoparticles. S. L. J. Am. Chem. Soc. 125, 13940–13941.
Raveendran P, Fu J, and Wallen (2006). Shape and size controlled synthesis of silver nanoparticles using Aloe vera plant extract. S. L. Green Chem. 8, 34–38.
Reddy A.S, Chen C.Y, Chen C.C, Jean J.S, Chen H.R, Tseng M.J, Fan C.W. and Wang J.C (2010). Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol. 10, 6567-6574.
Roh Y, Lauf R.J, McMillan A.D, Zhang C, Rawn C.J, Bai J, and Phelps T.J (2001). Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun. 118, 529–534.
Saxen A, Tripathi R. M, Zafar F, Singh, and P. Mater (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials Letters. 67, 91–94.
Senapati S, Syed A, Moeez S, Kumar A, and Ahmad A (2012). Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett. 79, 116–118.
Shenton W, Douglas T, Young M, Stubbs G. and Mann S (1999). Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 11, 253- 256
Shiv Shankar S, Ahmad A, Pasricha R, and Sastry M (2003). Bioreduction of chloroaurate ions by geranium leaves yielding gold nanoparticles. Mater. Chem. 13:1822–1846.
Si S, and Mandal T.K (2007). Tryptophan- based peptides to synthesize gold and silver nanoparticles a mechanistic and kinetic study. Chemistry. 13(11): 3160–3168.
Singh A, Talat M, Singh D, and Srivastava O.N (2010). Biosynthesis of gold and silver nanoparticles by natural precursor clove. J. Nanoparticle Res. 12: 1667–1675.
Siskova K.M, Straska J, Krizek M, Tucek J, Machala L, and Zboril R (2013). Formation of zero-valent iron nanoparticles mediated by amino acids. Procedia Environ. Sci. 18, 809–817.
Subramaniyam V, Subashchandrabose S.R, Thavamani P, Megharaj M, Chen Z, and Naidu R (2015). Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol. 27, 1861-1869.
Tai C. Y, Wang Y-H, and Liu H-S (2008). A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J. 54, 445–452.
Tan Y.N, Lee J.Y, and Wang D.I (2010). Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 132(16): 5677–5686.
Thekkae Padil V. V, and Cernik M (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a bio template. Int. J. Nanomed. 8, 889–898.
Treguer M, Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, and Belloni J.J (1998). Dose rate effect on radiolytic synthesis of gold-silver bimetallic clusters in solution. J. Phys. Chem. B. 102, 4310–4321.
Vigneshwaran N, Ashtaputre N.M, Varadarajan P.V, Nachane R.P, Paralikar K.M, and Balasubramanya R.H (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61, 1413–1418.
Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P. and Liu H (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol., 103, 273-278.
Xie J, Lee J.Y, Wang D.I.C, and Ting Y.P. (2007). Silver nanoplates: From biological to biomimetic synthesis. ACS Nano. 1, 429–439.
Zayed M.F, Eisa W.H, and Shabaka A.A (2012). Green Nanotechnologies- Synthesis of metal nanoparticles using plants. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 98: 423-428.
Zhang X, Yan S, Tyagi R.D, and Surampalli R.Y (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 82, 489–494.