A Review on Analytical Methods for Determination of Azithromycin
DOI:
https://doi.org/10.37285/ijpsn.2024.17.4.8Abstract
Azithromycin treatment has been associated with a decrease in ventilation time and death in several viral infections. It possesses immune-modulating properties, including the capacity to inhibit cytokine production, preserve the integrity of epithelial cells, and prevent lung fibrosis. Primary hepatic metabolism is the process by which drugs are broken down into inactive metabolites that keep their biological effects. These prompted numerous studies and publications that used a variety of analytical techniques to find, evaluate, and investigate azithromycin and its metabolites. This review aims to provide an overview of the various analytical techniques—such as voltammetry, flow injection, hyphenated mass spectrometry, and chromatography—that have been published for the years 1990 to 2020 in order to determine azithromycin. While azithromycin was most commonly quantified using high-performance liquid chromatography, the study's results indicate that when compared to alternative techniques, liquid chromatography-mass spectrometry had the highest sensitivity, with a limit of detection of 0.0005 µg/mL.
Downloads
Metrics
Keywords:
Azithromycin, Determination, Analytical Methods, Antibiotics, Drug, ReviewPublished
How to Cite
Issue
Section
References
Sadiq KA, Mohammed SJ, Ghati SK, Jasim MS. Adsorption of Bromothymol Blue Dye onto Bauxite Clay. 2024.
Jasim WA, Salman JD, Jamur JMS. Flame atomic absorption spectrophotometry analysis of heavy metals in some food additives available in baghdad markets, iraq. Indian J Forensic Med Toxicol. 2020;14(2):451–6.
Shamar JM. Determination of some phenols in Tigris River by HPLC. Ibn Al-Haitham J Pure Appl Sci. 2013;26(1):250–8.
Jamur JMS. Optimization of Plasma-Assisted Desorption / Ionization- Mass Spectrometry for Analysis of Ibuprofen. 2023;21–4.
Shamar J, Abbas S, Abbas Z. Analytical Methods for Determination of Ketoprofen Drug: A review. Ibn AL-Haitham J Pure Appl Sci. 2022;35(3):76–82.
Federal Law No. 7-FZ dated January 10, 2002 (Ed. March 26, 2022) “On Environmental Protection.” Appendix to “Rossiyskaya Gazeta”, No. 4, 2002 Year Gazette of the Federal Assembly of the Russian Federation, No. 6, February 21, 2002. 2024;21–8
Jamur JMS. Analytical Techniques in Pharmaceutical Pollution of the World’S Rivers; a Review. ChemChemTech. 2024;67(5):6–16.
Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco ME, De-Antonio Cuscó M, Ferrández O, Horcajada JP, et al. Azithromycin in the treatment of COVID-19: a review. Expert Rev Anti Infect Ther [Internet]. 2021;19(2):147–63. Available from:
https://doi.org/10.1080/14787210.2020.1813024
H. Jaber S, T.Salih Z, M. Salmo H. Formulation of Azithromycin Suspension as an Oral Dosage Form. Iraqi J Pharm Sci (P-ISSN 1683 - 3597 E-ISSN 2521 - 3512). 2017;21(1):61–9.
Jamur JMS. Raman spectroscopy analysis for monitoring of chemical composition of aspirin after exposure to plasma flame. 2022;34(5):18–22.
Abbas SM, Jamur JMS, Sallal TD. Indirect spectrophotometric determination of mebendazole using n-bromosuccinimide as an oxidant and tartarazine dye as analytical reagent. Egypt J Chem. 2021;64(9):4913–7.
Rutten F, Jamur J, Roach P. Fast and versatile ambient surface analysis by plasma-assisted desorption/ionisation mass spectrometry. Spectrosc Eur. 2015;27(6):10.
El-Gindy A, Attia KA, Nassar MW, Al Abasawi NM, Al-Shabrawi M. Optimization and validation of a stability-indicating RP-HPLC method for determination of azithromycin and its related compounds. J AOAC Int. 2011;94(2):513–22.
Ebrahimzadeh H, Yamini Y, Ara KM, Kamarei F, Khalighi-Sigaroodi F. Determination of azithromycin in biological samples by LLLME combined with LC. Chromatographia. 2010;72 (7–8):731–5.
Yang ZY, Wang L, Tang X. Determination of azithromycin by ion-pair HPLC with UV detection. J Pharm Biomed Anal. 2009;49(3): 811–5.
Zubata P, Ceresole R, Rosasco MA, Pizzorno MT. A new HPLC method for azithromycin quantitation. J Pharm Biomed Anal. 2002;27(5):833–6.
Kwiecień A, Krzek J, Biniek Ł. TLC-densitometric determination of azithromycin in pharmaceutical preparations. J Planar Chromatogr - Mod TLC. 2008;21(3):177–81.
Bahrami G, Mohammadi B. A new on-line, in-tube pre-column derivatization technique for high performance liquid chromatographic determination of azithromycin in human serum. J Chromatogr B Anal Technol Biomed Life Sci. 2006;830(2):355–8.
Bahrami G, Mirzaeei S, Kiani A. High performance liquid chromatographic determination of azithromycin in serum using fluorescence detection and its application in human pharmacokinetic studies. J Chromatogr B Anal Technol Biomed Life Sci. 2005;820(2) :277–81.
Wilms E, Trumpie H, Veenendaal W, Touw D. Quantitative determination of azithromycin in plasma, blood and isolated neutrophils by liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl-chloride and fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2005;814(1):37–42.
Shepard RM, Duthu GS, Ferraina RA, Mullins MA. High-performance liquid chromatographic assay with electrochemical detection for azithromycin in serum and tissues. J Chromatogr B Biomed Sci Appl. 1991;565(1–2):321–37.
Kovačić-Bošnjak N, Marincel J, Lopotar N, Kobrehel G. Reversed-phase HPLC analysis of the semisynthetic macrolide antibiotic azithromycin. Chromatographia. 1988;25(11):999–1003.
Al-Hakkani MF. A rapid, developed and validated RP-HPLC method for determination of azithromycin. SN Appl Sci [Internet]. 2019;1(3):1–8. Available from: https://doi.org/10.1007/s42452-019-0237-6
Ghari T, Kobarfard F, Mortazavi SA. Development of a simple RP-HPLC-UV method for determination of azithromycin in bulk and pharmaceutical dosage forms as an alternative to the USP method. Iran J Pharm Res. 2013;12(SUPPL.):55–61.
Zeng A, Liu X, Zhang S, Zheng Y, Huang P, Du K, et al. Determination of azithromycin in raw materials and pharmaceutical formulations by HPLC coupled with an evaporative light scattering detector. Asian J Pharm Sci [Internet]. 2014;9(2):107–16. Available from: http://dx.doi.org/10.1016/j.ajps.2013.12.007
Taninaka C, Ohtani H, Hanada E, Kotaki H, Sato H, Iga T. Determination of erythromycin, clarithromycin, roxithromycin, and azithromycin in plasma by high-performance liquid chromatography with amperometric detection. J Chromatogr B Biomed Sci Appl. 2000;738(2):405–11.
Barrett B, Bořek-Dohalský V, Fejt P, Vaingátová S, Huclová J, Němec B, et al. Validated HPLC-MS-MS method for determination of azithromycin in human plasma. Anal Bioanal Chem. 2005;383(2):210–7.
Chen L, Qin F, Ma Y, Li F. Quantitative determination of azithromycin in human plasma by ultra performance liquid chromatography-electrospray ionization mass spectrometry and its application in a pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855(2 SPEC. ISS.):255–61.
Filist M, Buś-Kwaśnik K, Ksycińska H, Rudzki PJ. Simplified LC-MS/MS method enabling the determination of azithromycin in human plasma after a low 100mg dose administration. J Pharm Biomed Anal. 2014;100:184–9.
Chen BM, Liang YZ, Chen X, Liu SG, Deng FL, Zhou P. Quantitative determination of azithromycin in human plasma by liquid chromatography-mass spectrometry and its application in a bioequivalence study. J Pharm Biomed Anal. 2006;42(4):480–7.
Choemunng A, Na-Bangchang K. An alternative liquid chromatography-mass spectrometric method for the determination of azithromycin in human plasma and its application to pharmacokinetic study. J Liq Chromatogr Relat Technol. 2010;33(16):1516–28.
Thangadurai S. Gas chromatographic–mass spectrometric determination of azithromycin in biological fluids. J Anal Sci Technol. 2015;6(1):0–5.
Suhagia B, Shah S, Rathod I, Patel H, Doshi K. Determination of azithromycin in pharmaceutical dosage forms by Spectrophotometric method. Indian J Pharm Sci. 2006;68(2):242–5.
Bhimani S, Sanghvi G, Pethani T, Dave G, Airao V, Sharma T, et al. Development of the UV Spectrophotometric Method of Azithromycin in API and Stress Degradation Studies. Int Lett Chem Phys Astron. 2016;68(July):48–53.
Robaina NF, de Paula CER, Brum DM, de la Guardia M, Garrigues S, Cassella RJ. Novel approach for the determination of azithromycin in pharmaceutical formulations by Fourier transform infrared spectroscopy in film-through transmission mode. Microchem J [Internet]. 2013;110:301–7. Available from:
http://dx.doi.org/10.1016/j.microc.2013.04.015
Mallah MA, Sherazi STH, Mahesar SA, Rauf A. Assessment of Azithromycin in Pharmaceutical Formulation by Fourier-transform Infrared (FT- IR) Transmission Spectroscopy Assessment of Azithromycin in Pharmaceutical Formulation by Fourier-transform Infrared ( FT-IR ) Transmission Spectroscopy. 2011;12(January):61–7.
Mohammad Shoeb -, Alam MF, Islam MM, Parvin N, Islam MN, Mamun MIR. Assessment of Quality of Azithromycin, a Macrolide Antibiotic by NMR Spectroscopy. Bangladesh Pharm J. 2021;24(1):37–44.
Li Y, Du G, Cai W, Shao X. Classification and Quantitative Analysis of Azithromycin Tablets by Raman Spectroscopy and Chemometrics. Am J Anal Chem. 2011;02(02):135–41.
Hernandes IS, Da Silva HC, Dos Santos HF, Pereira Ávila E, de almeida mauro v, Gomes MGR, et al. An Investigation of the Predominant Structure of Antibiotic Azithromycin in Chloroform Solution through NMR and Thermodynamic Analysis. Phys Chem Chem Phys. 2022;
Farghaly OAEM, Mohamed NAL. Voltammetric determination of azithromycin at the carbon paste electrode. Talanta. 2004;62(3):531–8.
Nigović B, Šimunić B. Voltammetric assay of azithromycin in pharmaceutical dosage forms. J Pharm Biomed Anal. 2003;32(1):197–202.
Rufino JL, Pezza HR, Pezza L. Flow-injection spectrophotometric determination of azithromycin in pharmaceutical formulations using p-chloranil in the presence of hydrogen peroxide. Anal Sci. 2008;24(7):871–6.