A Subject Review on Application of Analytical Chemistry in the Mitochondrial Medicine
DOI:
https://doi.org/10.37285/ijpsn.2024.17.3.10Abstract
Understanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the primary research technique for understanding mitochondrial illnesses. The purpose of this review is to collect original studies and papers describing a variety of analytical chemistry tasks carried out in mitochondria. Analytical chemistry is essential to the biological and medical sciences. Several analytical methods have been used in this field, such as chromatographic, spectroscopic, spectrophotometric, electrochemical analysis, and electrospray ionization mass spectrometry. While spectroscopic techniques in particular have yielded important information in certain cases, the nature of these techniques nevertheless limits the information that can be collected. Mass spectrometry may, however, produce incredibly detailed datasets.
Downloads
Metrics
Keywords:
Analytical Chemistry, Application, Mitochondrial Medicine, ReviewPublished
How to Cite
Issue
Section
References
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med. 2022;50(4).
Marí M, Colell A. Mitochondrial oxidative and nitrosative stress as a therapeutic target in diseases. Antioxidants. 2021;10(2):1–3.
Ježek P. Mitochondrial redox regulations and redox biology of mitochondria. Antioxidants. 2021;10(12):10–1.
Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491(7424):374–83.
Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion [Internet]. 2016;31:63–74. Available from: http://dx.doi.org/10.1016/j.mito.2016.10.005
Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med. 2021;7(January):1–13.
Newmeyer DD, Ferguson-Miller S. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90.
McBride HM, Neuspiel M, Wasiak S. Mitochondria: More Than Just a Powerhouse. Curr Biol. 2006;16(14):551–60.
Riedl SJ, Salvesen GS. The apoptosome: Signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8(5):405–13.
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6(5):513–9.
Mishra NC, Kumar S. Apoptosis: A mitochondrial perspective on cell death. Indian J Exp Biol. 2005;43(1):25–34.
Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc [Internet]. 2014;9(2):421–38. Available from: http://dx.doi.org/10.1038/nprot.2014.018
Friedman JR, Nunnari J. Mitochondrial form and function. 2014;
Area-Gomez E, Schon EA. Mitochondrial genetics and disease. J Child Neurol. 2014;29(9):1208–15.
Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.
NASS MM, NASS S. Intramitochondrial Fibers With Dna Characteristics. I. Fixation and. J Cell Biol. 1963;19:593–611.
Ephrussi B, Slonimski PP. Yeast mitochondria: Subcellular units involved in the synthesis of respiratory enzymes in yeast. Nature. 1955;176(4495):1207–8.
Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–16.
Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med. 2012;4(118).
Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic Mitochondrial DNA Mutations Are Common in the General Population. Am J Hum Genet. 2008;83(2):254–60.
DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. Nat Rev Neurol. 2013;9(8):429–44.
DiMauro S, Hirano M, Schon EA. Approaches to the treatment of mitochondrial diseases. Muscle and Nerve. 2006;34(3):265–83.
Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A Case of Severe Hypermetabolism of Nonthyroid Origin With a Defect in the Maintenance of Mitochondrial Respiratory Control: a Correlated Clinical, Biochemical, and Morphological Study. J Clin Invest. 1962;41(9):1776–804.
Luft R. The development of mitochondrial medicine. BBA - Mol Basis Dis. 1995;1271(1):1–6.
Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh Syndrome: Neuropathology and Pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–92.
Gerards M, Sallevelt SCEH, Smeets HJM. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab [Internet]. 2016;117(3):300–12. Available from: http://dx.doi.org/10.1016/j.ymgme.2015.12.004
Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC 25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8(9):1019–38.
Zhao H, Perkins G, Yao H, Callacondo D, Appenzeller O, Ellisman M, et al. Mitochondrial dysfunction in iPSC-derived neurons of subjects with chronic mountain sickness. J Appl Physiol. 2018;125(3):832–40.
Wang Y, Guan A, Wickramasekara S, Phillips KS. Analytical Chemistry in the Regulatory Science of Medical Devices. Annu Rev Anal Chem. 2018;11(June):307–27.
Wormuth K. Ch9 - Characterization of Therapeutic Coatings. Coating. :203–23.
Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol [Internet]. 2011;15(5):667–76. Available from: http://dx.doi.org/10.1016/j.cbpa.2011.07.012
Kannan RY, Salacinski HJ, Vara DS, Odlyha M, Seifalian AM. Review paper: Principles and applications of surface analytical techniques at the vascular interface. J Biomater Appl. 2006;21(1):5–32.
Pidhatika B, Chen Y, Coullerez G, Al-Bataineh S, Textor M. ToF-SIMS analysis of poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers. Anal Bioanal Chem. 2014;406(5):1509–17.
De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC, et al. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: Development and analytical characterization. Anal Bioanal Chem. 2013;405(2–3):805–16.
Al-Bataineh SA, Jasieniak M, Britcher LG, Griesser HJ. TOF-SIMS and principal component analysis characterization of the multilayer surface grafting of small molecules: Antibacterial furanones. Anal Chem. 2008;80(2):430–6.
Vertes A, Hitchins V, Phillips KS. Analytical challenges of microbial biofilms on medical devices. Anal Chem. 2012;84(9):3858–66.
Takmakov P, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng [Internet]. 2015;12(2):26003. Available from: http://dx.doi.org/10.1088/1741-2560/12/2/026003
Fisher GL, Belu AM, Mahoney CM, Wormuth K, Lt MP, City C. Three-Dimensional TOF-SIMS Imaging of a Pharmaceutical in a Coronary Stent Coating as a Function of Elution Time. Anal Chem. 2009;81(24):9930–40.
Jamur JMS. Analytical Techniques in Pharmaceutical Pollution of the World’S Rivers; a Review. ChemChemTech. 2024;67(5):6–16.
Sadiq KA, Mohammed SJ, Ghati SK, Jasim MS. Adsorption of Bromothymol Blue Dye onto Bauxite Clay. 2024.
White B. Medical Devices and Combination Products. Using the Pharmaceutical Literature. 2006. 233–297 p.
Shamar J, Abbas S, Abbas Z. Analytical Methods for Determination of Ketoprofen Drug: A review. Ibn AL-Haitham J Pure Appl Sci. 2022;35(3):76–82.
Jamur JMS. Raman spectroscopy analysis for monitoring of chemical composition of aspirin after exposure to plasma flame. 2022;34(5):18–22.
Shamar JM. Determination of some phenols in Tigris River by HPLC. Ibn Al-Haitham J Pure Appl Sci. 2013;26(1):250–8.
Shamar JM. Separation and Identification of Naphthalene, Acenaphthylene, Pyrene, Benz{a} Anthracene and 1,3,2,4-Dibenzanthracene. J Al-Nahrain Univ Sci. 2009;12(4):14–24.
Rutten F, Jamur J, Roach P. Fast and versatile ambient surface analysis by plasma-assisted desorption/ionisation mass spectrometry. Spectrosc Eur. 2015;27(6):10.
Jamur JMS. Optimization of plasma-assisted desorption / ionization- mass spectrometry for analysis of ibuprofen. 2023;21–4.
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. Biochim Biophys Acta - Biomembr [Internet]. 2021;1863(1):183447. Available from: https://doi.org/10.1016/j.bbamem.2020.183447
Heath GR, Kots E, Robertson JL, Lansky S, Khelashvili G, Weinstein H, et al. Localization atomic force microscopy. Nature [Internet]. 2021;594(7863):385–90. Available from: http://dx.doi.org/10.1038/s41586-021-03551-x
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, et al. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev. 2021;121(19):11701–25.
Adam N, Beattie TL, Riabowol K. Fluorescence microscopy methods for examining telomeres during cell aging. Ageing Res Rev [Internet]. 2021;68(December 2020):101320. Available from: https://doi.org/10.1016/j.arr.2021.101320
Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021;10(1).
Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, Sauer M, et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano. 2020;14(10):14190–200.
Zhang Y, Zong H, Zong C, Tan Y, Zhang M, Zhan Y, et al. Fluorescence-Detected Mid-Infrared Photothermal Microscopy. J Am Chem Soc. 2021;143(30):11490–9.
Alexander JF, Seua A V., Arroyo LD, Ray PR, Wangzhou A, Heiβ-Lückemann L, et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 2021;11(7):3109–30.
Dumitru AC, Stommen A, Koehler M, Cloos AS, Yang J, Leclercqz A, et al. Probing PIEZO1 Localization upon Activation Using High-Resolution Atomic Force and Confocal Microscopy. Nano Lett. 2021;21(12):4950–8.
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK, et al. Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. Biomed Opt Express. 2021;12(6):3372.
Zhao Y, Raghuram A, Kim HK, Hielscher AH, Robinson JT, Veeraraghavan A. High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography. IEEE Trans Pattern Anal Mach Intell. 2021;43(7):2206–19.
Backov L, Rösel D, Br J, Benda A. Invadopodia Structure in 3D Environment Resolved by Near-Infrared Branding Protocol Combining Correlative Confocal and FIB-SEM Microscopy. 2021;
Uo ROG, Arnea ITAYB, Haked NATS. Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. 2021;12(4):1869–81.
Lamers MM, Vaart J Van Der, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2- 2 infection of human alveolar type II-like cells. 2021;1–19.
Messal HA, Almagro J, Thin MZ, Tedeschi A, Ciccarelli A, Blackie L, et al. Antigen retrieval and clearing for whole-organ immuno fluorescence by FLASH. Nat Protoc [Internet]. Available from: http://dx.doi.org/10.1038/s41596-020-00414-z
Miyashita L, Foley G, Gill I, Gillmore G, Grigg J, Wertheim D. Confocal microscopy 3D imaging of diesel particulate matter. 2021;
Restall BS, Kedarisetti P, Haven NJM, Martell MT, Zemp RJ. Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging. 2023;26(September 2021):1–12.
Rodriguez-gallardo S, Kurokawa K, Sabido-bozo S, Cortes-gomez A, Perez-linero AM, Aguilera-romero A, et al. Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by Super-resolution Confocal Live Imaging Microscopy ( SCLIM ). :1–5.
Zahedi A, On V, Phandthong R, Chaili A, Remark G, Bhanu B, et al. Deep Analysis of Mitochondria and Cell Health Using Machine Learning. Sci Rep. 2018;8(1):1–15.
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, et al. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J. 2019;33(12):13176–88.
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum–Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol [Internet]. 2018;28(7):523–40. Available from: https://doi.org/10.1016/j.tcb.2018.02.009
Sun J yi, Zhao S jun, Wang H bin, Hou Y jun, Mi Q jie, Yang M feng, et al. Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage. Transl Stroke Res. 2021;12(6):1067–80.
Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol [Internet]. 2019;21(4):476–86. Available from: http://dx.doi.org/10.1038/s41556-019-0296-3
Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun [Internet]. 2020;11(1):1–17. Available from: http://dx.doi.org/10.1038/s41467-020-16074-2
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2017;1863(5):1066–77. Available from: http://dx.doi.org/10.1016/j.bbadis.2016.11.010
Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, et al. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy. 2017;13(8):1304–17.
Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis [Internet]. Vol. 10, Emerging Microbes and Infections. Taylor & Francis; 2021. 19–36 p. Available from: https://doi.org/10.1080/22221751.2020.1861913
Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang Z ling, et al. Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol. 2018;821:1–10.
Tao L, Liu X, Da W, Tao Z, Zhu Y. Pycnogenol achieves neuroprotective effects in rats with spinal cord injury by stabilizing the mitochondrial membrane potential. Neurol Res [Internet]. 2020;42(7):597–604. Available from: https://doi.org/10.1080/01616412.2020.1773610
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, et al. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One. 2018;13(1):1–16.
Marcondes NA, Terra SR, Lasta CS, Hlavac NRC, Dalmolin ML, Lacerda L de A, et al. Comparison of JC-1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytom Part A. 2019;95(2):214–8.
Poznanski RR, Cacha LA, Ali J, Rizvi ZH, Yupapin P, Salleh SH, et al. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals. PLoS One. 2017;12(9):1–20.
Georgakopoulos ND, Wells G, Campanella M. The pharmacological regulation of cellular mitophagy. Nat Chem Biol [Internet]. 2017;13(2):136–46. Available from: http://dx.doi.org/10.1038/nchembio.2287
Bikas A, Jensen K, Patel A, Costello J, Kaltsas G, Hoperia V, et al. Mitotane induces mitochondrial membrane depolarization and apoptosis in thyroid cancer cells. Int J Oncol. 2019;55(1):7–20.
Gloria A, Wegher L, Carluccio A, Valorz C, Robbe D, Contri A. Factors affecting staining to discriminate between bull sperm with greater and lesser mitochondrial membrane potential. Anim Reprod Sci [Internet]. 2018;189(December):51–9. Available from: http://dx.doi.org/10.1016/j.anireprosci.2017.12.007
Saraf KK, Kumaresan A, Chhillar S, Nayak S, Lathika S, Datta TK, et al. Spermatozoa with high mitochondrial membrane potential and low tyrosine phosphorylation preferentially bind to oviduct explants in the water buffalo (Bubalus bubalis). Anim Reprod Sci [Internet]. 2017;180:30–6. Available from: http://dx.doi.org/10.1016/j.anireprosci.2017.02.010
Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, et al. Mitochondrial autophagy and cell survival are regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy [Internet]. 2021;17(11):3794–812. Available from: https://doi.org/10.1080/15548627.2021.1938913
Rovini A, Heslop K, Hunt EG, Morris ME, Fang D, Gooz M, et al. Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB J. 2021;35(1):1–14.
Samuvel DJ, Li L, Krishnasamy Y, Gooz M, Takemoto K, Woster PM, et al. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy. 2022;18(11):2671–85.
Wang Q, Hutt KJ. Evaluation of mitochondria in mouse oocytes following cisplatin exposure. J Ovarian Res. 2021;14(1):1–10.
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, et al. BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy [Internet]. 2021;17(10):3140–59. Available from: https://doi.org/10.1080/15548627.2020.1871204
Young VC, Artigas P. Displacement of the Na+/K+ pump’s transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci USA. 2021;118(8):1–10.
Pflieger D, Le Caer JP, Lemaire C, Bernard BA, Dujardin G, Rossier J. Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem. 2002;74(10):2400–6.
Ranji M, Jaggard DL, Chance B. Observation of mitochondrial morphology and biochemistry changes undergoing apoptosis by angularly resolved light scattering and cryoimaging. Biophotonics and Immune Responses. 2006;6087(February 2006):60870K.
Zhang W, Cui H, Wong LJC. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem. 2012;58(9):1322–31.
Giorgianni F, Koirala D, Weber KT, Beranova-Giorgianni S. Proteome analysis of subsarcolemmal cardiomyocyte mitochondria: A comparison of different analytical platforms. Int J Mol Sci. 2014;15(6):9285–301.
McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem. 2007;364(2):128–37.
Chaiyarit S, Thongboonkerd V. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Anal Biochem [Internet]. 2009;394(2):249–58. Available from: http://dx.doi.org/10.1016/j.ab.2009.07.026
Abbas SM, Jamur JMS, Nasif AM. Spectrophotometric Method for the Determination of Metoclopramide in Pharmaceutical Forms. J Appl Spectrosc. 2021;88(2):433–40.
Mohammed MA, Abbas SM, Jamur JMS. Derivative spectrophotometric determination for simultaneous estimation of isoniazid and ciprofloxacin in mixture and pharmaceutical formulation. Methods Objects Chem Anal. 2020;15(3):105–10.
Abbas SM, Jamur JMS, Sallal TD. Indirect spectrophotometric determination of mebendazole using n-bromosuccinimide as an oxidant and tartarazine dye as analytical reagent. Egypt J Chem. 2021;64(9):4913–7.
Jasim WA, Salman JD, Jamur JMS. Flame atomic absorption spectrophotometry analysis of heavy metals in some food additives available in Baghdad markets, Iraq. Indian J Forensic Med Toxicol. 2020;14(2):451–6.
Ma YY, Zhang XL, Wu TF, Liu YP, Wang Q, Zhang Y, et al. Analysis of the mitochondrial complex I-V enzyme activities of peripheral leukocytes in oxidative phosphorylation disorders. J Child Neurol. 2011;26(8):974–9.
Budowle B, Eisenberg AJ, Gonzalez S, Planz J V., Sannes-Lowery KA, Hall TA, et al. Validation of mass spectrometry analysis of mitochondrial DNA. Forensic Sci Int Genet Suppl Ser. 2009;2(1):527–8.
Borah K, Rickman OJ, Voutsina N, Ampong I, Gao D, Baple EL, et al. A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism. Redox Biol. 2020;36(April).