Antioxidant Activity of Selected Chemical Constituents of Quinchamaliumchilensis
DOI:
https://doi.org/10.37285/ijpsn.2015.8.1.10Abstract
Antioxidant compounds from plant sources have been used worldwide for a variety of indications. In this study, phytochemical investigation of the aerial parts of QuinchamaliumchilensisMol. (Santalaceae) resulted in the isolation and identification of fourflavonol glycolsides, quercetin-3-O-β-D-glucopyranosyl-(1→2)-[α-L-rhamnopyra-nosyl-(1→6)]-β-D glucopyranoside(1), kaempferol-3-O-β-D-glucopyranosyl-(1→2)-[α-L-rhamn opyranosyl-(1→6)]-β-D-glucopyranoside(2),quercetin-3-O-xylosyl-(1→2)-[α-L-rha-mnopyranosyl-(1→6)]-β-D-glucopyranoside(3) and rutin(4), as well as one flavanone glycoside, pinocembroside(5). The compounds were identified by 1D- and 2D-NMR experiments, mass spectrometry and UV spectra by comparison with those reported in literature. These compounds were isolated for the first time from the leaves of Q. chilensis. The antioxidant properties of the extract were investigated using DPPH and ferric reducing antioxidant potential (FRAP) assays. Total phenolic content was determined by the Folin-Ciocalteau method. Significant relationship between antioxidant capacity and total phenolic content was found, indicating that phenolic compounds are the major contributors to the antioxidant properties of this plant. These active molecules have therapeutic potential in treating conditions associated with oxygen free radicals.
Downloads
Metrics
Keywords:
Quinchamaliumchilensis, flavonoid glycosides, total phenolic content, antioxidant activity.Downloads
Published
How to Cite
Issue
Section
References
Benzie FF and Strain JJ. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”. The FRAP Assay. Analytical Biochemistry 239(1): 70-76.
Calderón – Montaño J, Burgos – Moron E, Pérez – Guerrero C and López – Lazaro M. (2011). A Review of the Dietary Flavonoid Kaempferol. Medical Chemistry 11(4): 298-344.
Cañigueral S, Serra M, Vila R and Adzet T. (1991). Polyphenolglycosides from Quinchamalium chilense. Planta Medica 57: 114-115.
Chwa L. (2013) A Review on Plant based Rutin Extraction Methods and its Pharmacological activities. Journal of Ethnopharma-cology 150(3): 805-817.
Davis DG and Bax A. (1985). Assignment of Complex Proton NMR Spectra via Two Dimensional Homonuclear Hartmann-Hahn Spectroscopy. Journal of the American Chemical Society 107(9): 2821-2823.
Dudonne S, Vitrac X, Couttiere P, Woillez M and Jean-Michel M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agriculture and Food Chemistry 57(5):1768-1774.
Gua J, Wangb Y, Franzblaub S, Montenegro G and Timmermann B. (2004). Constituents of Quinchamalium majus with Potential Antitubercular Activity. Zeitschrift Fuer Naturforschung 59c(11-12): 797-802.
Hammami S, Ben Jannet H, Bergaoui A, Ciavatta L, Cimino G and Mighri Z. (2004). Isolation and Structure Elucidation of a Flavanone, a Flavanone Glycoside and Vomifoliol from Echiochilon Fructicosum growing in Tunisia. Molecules 9(7): 602-608.
Henríquez C., Almonacid S, Chiffelle I, Valenzuela T, Araya M, Cabezas L. Simpson R and Speisky H. (2010). Determination of Antioxidant Capacity, Total Phenolic Content and Mineral Composition of Different Fruit Tissue of Five Apple Cultivars Grown in Chile. Chilean Journal of Agricultural Research 70(4): 523-536.
Hoffmann A, Liberona F, Munoz M and Watson J. (1998). Plantas Altoandinas en la Flora Silvestre de Chile. 1st Ed. Fundacion Claudio Gay. Santiago, Chile.
Horhammer L, Wagner H, Wilkomirsky M. T and Iyengar M.(1973). A. Flavonoide in Einigen Chilenischen Heilpflanzen. Phyto-chemistry 12: 2068-2069.
Henríquez C, Almonacid S, Chiffelle I, Valenzuela T, Araya M, Cabezas L., Simpson R and Speisky H. (2010). Determination of Antioxidant Capacity, Total Phenolic Content and Mineral Composition of Different Fruit Tissue of Five Apple Cultivars Grown in Chile. Chilean Journal of Agricultural Research 70(4): 523-536.
Joshi U, Gadge A, D’Mello P, Sinha R, Srivastava S and Govil G. (2011). Antiinflammatory, Antioxidant and Anticancer Activity of Quercetine and its Analogues. International Journal of Research in Pharmaceutical and Biomedical. Sciences 24: 1756-1766.
Kite G. C, Veitch N. C, Boalch M. E, Lewis G. P, Leon C. J and Simmonds S. J. (2009). Flavonol tetraglycosides from Fruits of Styphnolobium japonicum (Leguminosae) and the Authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry 70(6): 785-794.
Muñoz O, Montes M and Wilkomirsky T. (2004). Plantas Medicinales de Uso en Chile. Quimicay farmacología. 2nd Ed. Santiago, Chile.
Price K. R, Colquhoun I. J, Barnes K. A and Rhodes M. J. C. (1998). Composition and Content of Flavonol Glycosides in Green Beans and their Fate during Processing. Journal of Agricultural Food Chemistry 46(12): 4898-4903.
Rho H, Ghimeray A, Soo D, Sun M, Kwon S, Lee K, Cho D and Cho J. (2011). Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties. Molecules 16(4): 3338-3344.
Sang S, Cheng X, Zhu N, Stark R. E, Badmaev V, Ghai G, Rosen R. T and Ho C. (2001). Flavonol Glycosides and Novel Iridoid Glycoside from the Leaves of Morinda Citrifolia. Journal of Agricultural Food Chemistry 49(9): 4478-4481.
Simirgiotis M, Silva, M, Becerra J and Schmeda-Hirschmann G. (2012). Direct Characterisation of Phenolic Antioxidants in Infusions from four Mapuche Medicinal Plants by Liquid Chromatography with Diode Array Detection (HPLC-DAD) and Electrospray Ionisation Tandem Mass Spectrometry (HPLC-ESI–MS. Food Chemistry 131(1): 318-327.
Villaño D, Fernández-Pachón M.S, Moyá M.L, Troncoso A.M. and García-Parrilla M.C. (2007). Radical Scavenging Ability of Pholyfenolic Compounds towards DPHH Free Radical. Talanta 71(1): 230-235.
Wojdylo A, Oszmianski J and Czemerys R. (2007). Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chemistry 105(3): 940-949.