Ophthalmic Drug Delivery: New Dimensions

DOI:

https://doi.org/10.37285/ijpsn.2023.16.1.8

Authors

  • RAJAT BUDHORI Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida https://orcid.org/0000-0002-1888-548X
  • RAKHI MISHRA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida https://orcid.org/0000-0002-9292-3448
  • AYUSHI KAUSHIK Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
  • MANORMA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
  • SWARUPANJALI PADHI Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida

Abstract

The objective of this review is to compile updated scientific information on the conventional and novel approaches to the ocular delivery of medication. Owing to the special features and requirements of a specific site delivery system, there is a need for the refinement of novel drug delivery systems. The conventional ocular dosage forms often possess problems like quick pre-corneal drug excretion because of its nasolacrimal drainage which may lead to tearing turnover and finally result in low ocular bioavailability. The design of novel delivery systems helps in delivering the therapeutic agent very efficiently into the desired areas of the eyes by their unique particle size and also because of their biocompatibility with ocular tissues. In addition, they also offer good contact time, improved drug loading, and releasing properties with less drug loss and low toxicity. All these advantages of a novel delivery system directly cause an improvement in the patient’s satisfaction and the bioavailability of the therapeutic agent. In this review article, information about the different ocular novel drug delivery systems such as nanoparticles, liposomes, niosomes, microneedles, and dendrimers is summarized and discussed. Noteworthy contributions by various researchers in the field of these delivery systems have been also been mentioned. Therefore, this article will be beneficial for future researchers and formulation developers working on the design and development of ocular therapeutic delivery systems. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Ocular, Novel drug delivery, nanoparticles, liposomes, niosomes, microneedle, dendrimer

Downloads

Published

2023-02-13

How to Cite

1.
BUDHORI R, MAZUMDER R, MISHRA R, KAUSHIK A, MANORMA, PADHI S. Ophthalmic Drug Delivery: New Dimensions. Scopus Indexed [Internet]. 2023 Feb. 13 [cited 2025 Jan. 22];16(1):6350-61. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/2253

Issue

Section

Review Articles

References

Majeed A, Khan NA. Ocular in situ gel: An overview. Journal of Drug Delivery and Therapeutics. 2019 Jan 15;9(1):337-47.

Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. The AAPS journal. 2010 Sep;12(3):348-60.

Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. European journal of ophthalmology. 2019 Jan;29(1):113-26.

Cholkar K, Patel A, Dutt Vadlapudi A, K Mitra A. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent patents on nanomedicine. 2012 Oct 1;2(2):82-95.

Bremond-Gignac D, Chiambaretta F, Milazzo S. A European perspective on topical ophthalmic antibiotics: current and evolving options. Ophthalmology and eye diseases. 2011 Jan;3: OED-S4866.

Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug discovery today. 2008 Feb 1;13(3-4):135-43.

Alghadyan AA, Peyman GA, Khoobehi B, Milner S, Liu KR. Liposome-bound cyclosporine: clearance after intravitreal injection. International Ophthalmology. 1988 Jun;12(2):109-12.

Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. International journal of pharmaceutics. 2004 Jan 9;269(1):1-4.

Hathout R.M, Mansour S, Mortada N.D, Guinedi A.S., 2007. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS pharmscitech, 8(1), pp.E1-E12.

Sinha VR, Agrawal MK, Kumria R, Bhinge JR. Influence of operational variables on properties of piroxicam pellets prepared by extrusion-spheronization: A technical note. AAPS PharmSciTech. 2007 Mar;8(1): E137-41.

Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. Aaps Pharmscitech. 2010 Mar;11(1):241-6.

Hosny KM. Optimization of gatifloxacin liposomal hydrogel for enhanced transcorneal permeation. Journal of liposome research. 2010 Mar 1;20(1):31-7.

Kaiser JM, Imai H, Haakenson JK, Brucklacher RM, Fox TE, Shanmugavelandy SS, Unrath KA, Pedersen MM, Dai P, Freeman WM, Bronson SK. Nanoliposomal minocycline for ocular drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2013 Jan 1;9(1):130-40.

Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology. 2020 Apr 1;56:101581.

Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug delivery. 2014 Mar 1;21(2):87-100.

Azmin MN, Florence AT, Handjani‐Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of non‐ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. Journal of pharmacy and pharmacology. 1985 Apr;37(4):237-42.

Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release. 2014 Jul 10; 185:22-36.

Sahin NO. Niosomes as nanocarrier systems. Nanomaterials and nanosystems for biomedical applications. 2007:67-81.

Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. Journal of liposome research. 2017 Apr 3;27(2):118-29.

Aggarwal D, Pal D, Mitra AK, Kaur IP. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. International journal of pharmaceutics. 2007 Jun 29;338(1-2):21-6.

Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug development and industrial pharmacy. 2013 Nov 1;39(11):1599-617.

Yasin M.N, Hussain S, Malik F, Hameed A, Sultan T, Qureshi F, Riaz H, Perveen G, and Wajid A. Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5% w/v) in experimental conjunctivitis in albino rabbits. Pak J Pharm Sci 25, no. 1 (2012): 117-121.

Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. International journal of pharmaceutics. 2005 Dec 8;306(1-2):71-82.

Gupta H, Aqil M. Contact lenses in ocular therapeutics. Drug discovery today. 2012 May 1;17(9-10):522-7.

Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Therapeutic delivery. 2014 Dec;5(12):1297-315.

Peng CC, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 2010 May 1;31(14):4032-47.

Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012 Mar 1;33(7):2289-300.

Tieppo A, White CJ, Paine AC, Voyles ML, McBride MK, Byrne ME. Sustained in vivo release from imprinted therapeutic contact lenses. Journal of controlled release. 2012 Feb 10;157(3):391-7.

Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. International journal of pharmaceutics. 2005 Mar 23;292(1-2):95-117.

Gulsen D, Li CC, Chauhan A. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Current eye research. 2005 Jan 1;30(12):1071-80.

Sampathkumar SG, Yarema KJ. Dendrimers in cancer treatment and diagnosis. Nanotechnologies for the Life Sciences: Online. 2007 Sep 15.

Klajnert B, Bryszewska, M., 2001. Dendrimers: properties and applications. Acta biochimica polonica, 48(1), pp.199-208.

Tomalia DA, Fréchet JM. Discovery of dendrimers and dendritic polymers: A brief historical perspective. Journal of Polymer Science Part A: Polymer Chemistry. 2002 Aug 15;40(16):2719-28.

Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, Liang R, Wang A. Preparation and characterization of puerarin–dendrimer complexes as an ocular drug delivery system. Drug development and industrial pharmacy. 2010 Sep 1;36(9):1027-35.

Kambhampati SP, Mishra MK, Mastorakos P, Oh Y, Lutty GA, Kannan RM. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Sep 1;95:239-49.

Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of controlled release. 2005 Jan 20;102(1):23-38.

Yavuz B, Bozdağ Pehlivan S, Sümer Bolu B, Nomak Sanyal R, Vural İ, Ünlü N. Dexamethasone–pamam dendrimer conjugates for retinal delivery: Preparation, characterization and in vivo evaluation. Journal of Pharmacy and Pharmacology. 2016 Aug;68(8):1010-20.

Kouchak M. In situ gelling systems for drug delivery. Jundishapur journal of natural pharmaceutical products. 2014 Aug 1;9(3).

Gao Y, Sun Y, Ren F, Gao S. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug development and industrial pharmacy. 2010 Oct 1;36(10):1131-8.

Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RF. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2010 Jun 1;75(2):186-93.

Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. International journal of pharmaceutics. 2006 Jun 6;315(1-2):12-7.

Rieke E.R, Amaral J, Becerra S.P, Lutz R.J , 2010. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. Journal of ocular pharmacology and therapeutics, 26(1), pp.55-64.

Donnelly RF, Raj Singh TR, and Woolfson AD (2010). Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Delivery, 17: 187–207.

Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharmaceutical research. 2009 Feb;26(2):395-403.

Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR. Coated microneedles for drug delivery to the eye. Investigative ophthalmology & visual science. 2007 Sep 1;48(9):4038-43.

Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharmaceutical research. 2011 Jan;28(1):166-76.

Sawant KK, Dodiya SS. Recent advances and patents on solid lipid nanoparticles. Recent patents on drug delivery & formulation. 2008 Jun 1;2(2):120-35.

Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug delivery. 2010 Oct 1;17(7):467-89.

Salata OV. Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology. 2004 Dec;2(1):1-6.

zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European journal of pharmaceutics and biopharmaceutics. 1998 Mar 1;45(2):149-55.

Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chemistry and physics of lipids. 2014 Jul 1; 181:56-61.

Pal Kaur I, Kanwar M. Ocular preparations: the formulation approach. Drug development and industrial pharmacy. 2002 Jan 1;28(5):473-93.

Kaur IP, Rana C, Singh H. Development of effective ocular preparations of antifungal agents. Journal of Ocular Pharmacology and Therapeutics. 2008 Oct 1;24(5):481-94.

Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug development and industrial pharmacy. 2013 Apr 1;39(4):508-19.

Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: the influence of pegylation and chitosan coating. AAPS Pharm Sci Tech. 2019 Jul;20(5):1-4.

Leonardi A, Bucolo C, Drago F, Salomone S, Pignatello R. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. International journal of pharmaceutics. 2015 Jan 15;478(1):180-6.

Hippalgaonkar K, Adelli GR, Hippalgaonkar K, Repka MA, Majumdar S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. Journal of ocular pharmacology and therapeutics. 2013 Mar 1;29(2):216-28.

Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010 Apr;5(3):485-505.

Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. International journal of pharmaceutics. 2009 Aug 13;378(1-2):177-86.

Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S. Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Patents on Drug Delivery & Formulation. 2019 Dec 1;13(4):246-54.

Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene therapy. 2001 Jul;8(13):999-1004.

Alvarez-Rivera F, Fernández-Villanueva D, Concheiro A, Alvarez-Lorenzo C. α-Lipoic acid in Soluplus® polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases. Journal of pharmaceutical sciences. 2016 Sep 1;105(9):2855-63.

Purkayastha HD, Hossian SI. Nanosuspension: A modern technology used in drug delivery system. Int J Curr Pharm Res. 2019;11(3):1-3.

Adibkia K, Shadbad MR, Nokhodchi A, Javadzedeh A, Barzegar-Jalali M, Barar J, Mohammadi G, Omidi Y. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. Journal of drug targeting. 2007 Jan 1;15(6):407-16.

Güven UM, Yenilmez E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: Nanosuspension formulation and in vitro–in vivo evaluation. Journal of Drug Delivery Science and Technology. 2019 Jun 1; 51:506-12.

Pignatello R, Bucolo C, Puglisi G. Ocular tolerability of Eudragit RS100® and RL100® nanosuspensions as carriers for ophthalmic controlled drug delivery. Journal of pharmaceutical sciences. 2002 Dec 1;91(12):2636-41.

Yadav SK, Mishra MK, Tiwari A, Shukla A. Emulgel: a new approach for enhanced topical drug delivery. Int J Curr Pharm Res. 2016;9(1):15-9.

Mohamed MI. Optimization of chlorphenesin emulgel formulation. The AAPS journal. 2004 Sep;6(3):81-7.

Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biological and Pharmaceutical Bulletin. 2007;30(2):350-3.

Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. International journal of pharmaceutics. 2010 Aug 30;396(1-2):179-87.

Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacologica Sinica. 2010 Aug;31(8):990-8.

Alkatan HM, Maktabi A, Al-Harby M, Al-Rajhi AA. Candida parapsilosis corneal graft infection from a single eye center: Histopathologic report of 2 cases. Saudi Journal of Ophthalmology. 2015 Oct 1;29(4):303-6.

Bartimote C, Foster J, Watson S. The spectrum of microbial keratitis: an updated review. The Open Ophthalmology Journal. 2019 Dec 31;13(1):100-30.

Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and parasitic infections of the eye. Clinical microbiology reviews. 2000 Oct 1;13(4):662-85.

Onyewu C, Afshari NA, Heitman J. Calcineurin promotes infection of the cornea by Candida albicans and can be targeted to enhance fluconazole therapy. Antimicrobial agents and chemotherapy. 2006 Nov;50(11):3963-5.

Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. The AAPS journal. 2007 Sep;9(3): E371-7.

Fukushima A, Ozaki A, Ishida W, Van Rooijen N, Fukata K, Ueno H. Suppression of macrophage infiltration into the conjunctiva by clodronate liposomes in experimental immune-mediated blepharoconjunctivitis. Cell biology international. 2005 Apr 1;29(4):277-86.

Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short‐chain, C‐6 ceramide. Journal of leukocyte biology. 2008 Jun;83(6):1512-21.

Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS pharmscitech. 2008 Sep;9(3):740-7.

Allam A, El-Mokhtar MA, Elsabahy M. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. Journal of Pharmacy and Pharmacology. 2019 Aug;71(8):1209-21.

Hashim II, El-Dahan MS, Yusif RM, Abd-ElGawad AE, Arima H. Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biological and Pharmaceutical Bulletin. 2014 Apr 1;37(4):541-51.

Klang SH, Siganos CS, Benita S, Frucht-Pery J. Evaluation of a positively charged submicron emulsion of piroxicam on the rabbit corneum healing process following alkali burn. Journal of controlled release. 1999 Jan 1;57(1):19-27.

Fialho SL, Da Silva‐Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clinical & experimental ophthalmology. 2004 Dec;32(6): 626-32.

Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International journal of pharmaceutics. 2002 May 15;238(1-2):241-5.

Singh M, Guzman-Aranguez A, Hussain A, Srinivas CS, Kaur IP. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine. 2019 Feb;14(4):465-91.

Kao HJ, Lo YL, Lin HR, Yu SP. Characterization of pilocarpine‐loaded chitosan/carbopol nanoparticles. Journal of pharmacy and pharmacology. 2006 Feb;58(2):179-86.

Kassem MA, Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. International journal of pharmaceutics. 2007 Aug 1;340(1-2):126-33.

Ali Z, Sharma PK, Warsi MH. Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. Journal of applied pharmaceutical science. 2016 Sep 26;6(9):204-8.

Verma P, Ahuja M. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug delivery. 2016 Oct 12;23(8):3043-54.

Song HB, Lee KJ, Seo IH, Lee JY, Lee SM, Kim JH, Kim JH, Ryu W. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.Journal of Controlled Release. 2015 Jul 10; 209:272-9.

Gilger BC, Abarca EM, Salmon JH, Patel S. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Investigative ophthalmology & visual science. 2013 Apr 1;54(4):2483-92.

Upadhayay P, Kumar M, Pathak K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity. Iranian Journal of Pharmaceutical Research: IJPR. 2016;15(1):3.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G, Jain S. Development and characterization of 99mTc-timolol maleate for evaluating efficacy of in situ ocular drug delivery system. AAPS Pharm Sci Tech. 2009 Jun;10(2): 540-6.

Rupenthal ID, Alany RG, Green CR. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Molecular pharmaceutics. 2011 Dec 5;8(6):2282-90.

Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of Gelrite® gellan gum-based ocular delivery system for indomethacin. Acta Pharmaceutica-Zagreb-. 2003 Dec 1;53(4):251-62.