Neurotherapeutic Role of Nanomedicines in the Mitigation of Amyloid-Tau Peptides

DOI:

https://doi.org/10.37285/ijpsn-aktu.2022-06

Authors

  • Saumya Das Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida,
  • Apoorva Mishra Noida Institute of Engineering & Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida
  • Soni Kumari Noida Institute of Engineering & Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida

Abstract

Alzheimer’s disease, one of the commonest neurodegenerative disorders affecting the elderly throughout the globe. A person with AD experiences severe memory loss as the condition worsens and becomes unable to do basic tasks. Signs of mental disorientation, such as confusion, difficulty understanding and thinking, forget-fulness, trouble concentrating, repetition of words, personality changes, mood swings, depression, hallucination, jumbled speech, and loss of appetite are seen. In AD, free radical damage from reactive oxygen radicals like hydroxyl radical, hydrogen peroxide, nitric oxide, and super anions leads to neurodegeneration. Detrimental effect on lipids, proteins, and DNAs are just a few negative impacts caused by ROS. Antioxidants, however, scavenge ROS. Amyloid, which forms plaques around brain cells, and tau, which forms tangles inside brain cells, are examples of proteins that accumulate abnormally and contribute to AD. Unusual tau phosphorylation results into the development of aberrant neurofibrillary structures. It has been established that β-amyloid plays a remarkable role in the neurodegeneration associated with AD, which causes oxidative stress in the brain. Nanotechnology uses nanoparticles that acts as a drug delivery system and with the help of lipid based, polymeric based, and inorganic nanoparticles help in the sustained release of drugs at a specific location.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Keywords:

Alzheimer, nanotechnology, tau protein, β-amyloid

Published

2023-09-15

How to Cite

1.
Das S, Mishra A, Kumari S. Neurotherapeutic Role of Nanomedicines in the Mitigation of Amyloid-Tau Peptides. Scopus Indexed [Internet]. 2023 Sep. 15 [cited 2024 Sep. 8];15(7):6634-4. Available from: https://ijpsnonline.com/index.php/ijpsn/article/view/4806

References

Van Dam, D., & De Deyn, P. P. (2011, October). Animal models in the drug discovery pipeline for Alzheimer’s disease. British Journal of Pharmacology, 164(4), 1285–1300.

Nazem, A., & Mansoori, G. A. (2008, January 1). Nanotechnology solutions for Alzheimer’s disease: Advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer’s Disease, 13(2), 199–223.

Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: An update. Journal of Central Nervous System Disease, 12, 1179573520907397.

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia, 9(1), 63–75.e2.

Abbas, M. (2021, March 27). Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s patients. Polymers, 13(7), 1051.

Agrawal, M., Saraf, S., Saraf, S., Antimisiaris, S. G., Hamano, N., Li, S. D., Chougule, M., Shoyele, S. A., Gupta, U., Ajazuddin, A. A., & Alexander, A. (2018, June 3). Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opinion on Drug Delivery, 15(6), 589–617.

Spuch, C., Saida, O., & Navarro, C. (2012, April 1). Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents on Drug Delivery and Formulation, 6(1), 2–18.

Rajeshkumar, S., Ezhilarasan, D., Puyathron, N., & Lakshmi, T. (2019). Role of supermagnetic nanoparticles in Alzheimer disease. In Nanobiotechnology in neurodegenerative diseases (pp. 225–240). Springer.

Baratchi, S., Kanwar, R. K., Khoshmanesh, K., Vasu, P., Ashok, C., Hittu, M., Parratt, A., Krishnakumar, S., Sun, X., Sahoo, S. K., & Kanwar, J. R. (2009, February 1). Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Current Nanoscience, 5(1), 15–25.

Bhatt, D., Ajmeri, N., Mandal, S., & Rajesh, K. S. (2011). Nanoparticle: Design, characterization and evaluation for oral delivery of ropinirole hydrochloride. Elixir Pharmacy, 39, 4687–4689.

Re, F., Gregori, M., & Masserini, M. (2012, September 1). Nanotechnology for neurodegenerative disorders. Maturitas, 73(1), 45–51.

Rabiee, N., Ahmadi, S., Afshari, R., Khalaji, S., Rabiee, M., Bagherzadeh, M., Fatahi, Y., Dinarvand, R., Tahriri, M., Tayebi, L., Hamblin, M. R., & Webster, T. J. (2021). Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Advanced Therapeutics, 4(3), 2000076.

Tapeinos, C., Battaglini, M., & Ciofani, G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release, 264, 306–332.

Varun, T., Sonia, A., Bharat, P., Patil, V., Kumharhatti, P. O., & Solan, D. (2012). Niosomes and liposomes-vesicular approach towards transdermal drug delivery. Int. J. Pharm. Chem. Sci., 1(3), 632–644.

Chaurasia, S., & Dogra, S. S. (2017). Transfersomes: Novel approach for intranasal delivery. Eur. J. Pharm. med Res., 4(3), 192–203.

Alam, S., Mattern-Schain, S. I., & Best, M. D. (2017). Targeting and triggered release using lipid-based supramolecular assemblies as medicinal nanocarriers (pp. 329–364).

Sawant, R. R., & Torchilin, V. P. (2012). Challenges in development of targeted liposomal therapeutics. AAPS Journal, 14(2), 303–315.

Ezzati Nazhad Dolatabadi, J. E. N., & Omidi, Y. (2016). Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends in Analytical Chemistry, 77, 100–108.

Beloqui, A., Solinís, M. Á., Rodríguez-Gascón, A., Almeida, A. J., & Préat, V. (2016). Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(1), 143–161.

Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Advanced Pharmaceutical Bulletin, 5(3), 305–313.

Das, S., Ng, W. K., & Tan, R. B. (2012). Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European Journal of Pharmaceutical Sciences, 47(1), 139–151.

Li, F., Wang, Y., Liu, Z., Lin, X., He, H., & Tang, X. (2010). Formulation and characterization of bufadienolides-loaded nanostructured lipid carriers. Drug Development and Industrial Pharmacy, 36(5), 508–517.

Alam, T., Pandit, J., Vohora, D., Aqil, M., Ali, A., & Sultana, Y. (2015). Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: In vitro characterization and in vivo efficacy in epilepsy. Expert Opinion on Drug Delivery, 12(2), 181–194.

Silva, S., Marto, J., Gonçalves, L., Almeida, A. J., & Vale, N. (2020). Formulation, characterization and evaluation against SH-SY5Y cells of new tacrine and tacrine-MAP loaded with lipid nanoparticles. Nanomaterials, 10(10), 2089.

Hou, K., Zhao, J., Wang, H., Li, B., Li, K., Shi, X., Wan, K., Ai, J., Lv, J., Wang, D., Huang, Q., Wang, H., Cao, Q., Liu, S., & Tang, Z. (2020). Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nature Communications, 11(1), 4790.

Muller, A. P., Ferreira, G. K., da Silva, S., Nesi, R. T., de Bem Silveira, G., Mendes, C., Pinho, R. A., da Silva Paula, M. M., & Silveira, P. C. L. (2017, August 1). Safety protocol for the gold nanoparticles administration in rats. Materials Science and Engineering. C, Materials for Biological Applications, 77, 1145–1150.

Nazıroğlu, M., Muhamad, S., & Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 10(7), 773–782.

Jeon, S. G., Cha, M. Y., Kim, J. I., Hwang, T. W., Kim, K. A., Kim, T. H., Song, K. C., Kim, J. J., & Moon, M. (2019, April 1). Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 17, 297–307.

Sánchez-López, E., Ettcheto, M., Egea, M. A., Espina, M., Cano, A., Calpena, A. C., Camins, A., Carmona, N., Silva, A. M., Souto, E. B., & García, M. L. (2018, December). Memantine loaded PLGA pegylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. Journal of Nanobiotechnology, 16(1), 32.

Sun, D., Li, N., Zhang, W., Zhao, Z., Mou, Z., Huang, D., Liu, J., & Wang, W. (2016). Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids and Surfaces. B, Biointerfaces, 148, 116–129.

Gao, Y., Wang, Y., Ma, Y., Yu, A., Cai, F., Shao, W., & Zhai, G. (2009). Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids and Surfaces. B, Biointerfaces, 71(2), 306–314.

Ratnam, D. V., Ankola, D. D., Bhardwaj, V., Sahana, D. K., & Kumar, M. N. (2006). Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release, 113(3), 189–207.

Jain, A. K., Das, M., Swarnakar, N. K., & Jain, S. (2011). Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics. Critical Reviews in Therapeutic Drug Carrier Systems, 28(1), 1–45.

Pinheiro, R. G. R., Granja, A., Loureiro, J. A., Pereira, M. C., Pinheiro, M., Neves, A. R., & Reis, S. (2020). Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. European Journal of Pharmaceutical Sciences, 148, 105314.

Derakhshankhah, H., Hajipour, M. J., Barzegari, E., Lotfabadi, A., Ferdousi, M., Saboury, A. A., Ng, E. P., Raoufi, M., Awala, H., Mintova, S., Dinarvand, R., & Mahmoudi, M. (2016, November 16). Zeolite nanoparticles inhibit Aβ–fibrinogen interaction and formation of a consequent abnormal structural clot. ACS Applied Materials and Interfaces, 8(45), 30768–30779.

Naz, S., Beach, J., Heckert, B., Tummala, T., Pashchenko, O., Banerjee, T., & Santra, S. (2017). Cerium oxide nanoparticles: a’radical’approach to neurodegenerative disease treatment. Nanomedicine, 12(5), 545–553.

Vakilinezhad, M. A., Amini, A., Akbari Javar, H., Baha’addini Beigi Zarandi, B. F., Montaseri, H., & Dinarvand, R. (2018). Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru, 26(2), 165–177.

Ayaz, M., Ovais, M., Ahmad, I., Sadiq, A., Khalil, A. T., & Ullah, F. (2020). Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. In Metal nanoparticles for drug delivery and diagnostic applications (pp. 31–42). Elsevier.

Singh, A., Mahajan, S. D., Kutscher, H. L., Kim, S., & Prasad, P. N. (2020). Curcumin-pluronic nanoparticles: A theranostic nanoformulation for Alzheimer’s disease. Critical Reviews in Biomedical Engineering, 48(3), 153–168.

Kakkar, V., Kumari, P., Adlakha, S., & Kaur, I. P. (2019). Curcumin and its nanoformulations as therapeutic for Alzheimer’s disease. In Nanobiotechnology in neurodegenerative diseases (pp. 343–367). Springer.

Most read articles by the same author(s)